留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线切割加工中切缝宽度与材料去除率的优化研究

张艳明 张国军 徐中 陈志 黄浩

张艳明, 张国军, 徐中, 陈志, 黄浩. 线切割加工中切缝宽度与材料去除率的优化研究[J]. 机械科学与技术, 2017, 36(8): 1218-1223. doi: 10.13433/j.cnki.1003-8728.2017.0812
引用本文: 张艳明, 张国军, 徐中, 陈志, 黄浩. 线切割加工中切缝宽度与材料去除率的优化研究[J]. 机械科学与技术, 2017, 36(8): 1218-1223. doi: 10.13433/j.cnki.1003-8728.2017.0812
Zhang Yanming, Zhang Guojun, Xu Zhong, Chen Zhi, Huang Hao. Study on Optimization of Cutting Width and Material Removal Rate in WEDM[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(8): 1218-1223. doi: 10.13433/j.cnki.1003-8728.2017.0812
Citation: Zhang Yanming, Zhang Guojun, Xu Zhong, Chen Zhi, Huang Hao. Study on Optimization of Cutting Width and Material Removal Rate in WEDM[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(8): 1218-1223. doi: 10.13433/j.cnki.1003-8728.2017.0812

线切割加工中切缝宽度与材料去除率的优化研究

doi: 10.13433/j.cnki.1003-8728.2017.0812
基金项目: 

国家自然科学基金项目面上项目(51175207)与广东省省级科技科技计划项目(2013B091602001)资助

详细信息
    作者简介:

    张艳明(1993-),硕士研究生,研究方向为电火花线切割,优化算法,13554259541@163.com

    通讯作者:

    张国军(联系人),教授,博士,zgj@mail.hust.edu.cn

Study on Optimization of Cutting Width and Material Removal Rate in WEDM

  • 摘要: 在精密制造业中,切缝宽度对尺寸精度的影响尤为显著,而材料去除率是影响加工效率的最重要指标,其与切缝宽度之间关系复杂且相互制约,一组加工参数难以同时获得较小的切缝宽度和较高的材料去除率。针对此问题,运用BP神经网络与粒子群算法(PSO)的混合算法建立多目标预测优化模型;以Ti6Al4V合金为实验对象,以水压、脉冲时间、脉冲间隙、伺服电压和电极丝张力为工艺参数,以切缝宽度(Kerf)和材料去除率(MRR)为工艺目标,设计田口实验。结果显示,Kerf和MRR的预测平均相对误差分别为5.32%和6.14%,优化得到单目标和多目标最优工艺参数,Kerf同比降低11.10%,MRR同比提高27.37%,表明对切缝宽度和材料去除率的预测与参数优化效果显著。
  • [1] Ho K H, Newman S T, Rahimifard S, et al. State of the art in wire electrical discharge machining (WEDM)[J]. International Journal of Machine Tools and Manufacture, 2004,44(12-13):1247-1259
    [2] 廖剑霞,陈浩东,黄祯祥,等.复合运丝型电火花线切割加工参数分析与研究[J].机械科学与技术,2008,27(1):119-121,126 Liao J X, Chen H D, Huang Z X, et al. Study of machining parameters for compound-threading wire electrical discharge machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2008,27(1):119-121,126(in Chinese)
    [3] Tosun N, Cogun C, Tosun G. A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method[J]. Journal of Materials Processing Technology, 2004,152(3):316-322
    [4] 陈志,李贺,张臻,等.基于灰色预测模型电火花线切割工艺参数优化[J].机床与液压,2014,42(23):5-8 Chen Z, Li H, Zhang Z, et al. Process parameters optimization in WEDM based on GFM[J]. Machine Tool & Hydraulics, 2014,42(23):5-8(in Chinese)
    [5] Panda D K, Bhoi R K. Artificial neural network prediction of material removal rate in electro discharge machining[J]. Materials and Manufacturing Processes, 2005,20(4):645-672
    [6] Yang S H, Srinivas J, Mohan S, et al. Optimization of electric discharge machining using simulated annealing[J]. Journal of Materials Processing Technology, 2009,209(9):4471-4475
    [7] 李强,白基成,郭永丰,等.基于遗传算法的往复走丝电火花多次切割加工参数优化[J].电加工与模具,2010,(5):61-64,68 Li Q, Bai J C, Guo Y F, et al. Optimization of multiple cut on HS-WEDM based on genetic algorithm[J]. Electromachining & Mould, 2010,(5):61-64,68(in Chinese)
    [8] 李翔龙,殷国富.基于智能技术的电火花加工过程建模和参数优化[J].机械科学与技术,2002,21(4):623-624,647 Li X L, Yin G F. The modeling and parameter optimization for electrical discharge machining[J]. Mechanical Science and Technology, 2002,21(4):623-624,647(in Chinese)
    [9] Chen H C, Lin J C, Yang Y K, et al. Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach[J]. Expert Systems with Applications, 2010,37(10):7147-7153
    [10] 王小川,史峰,郁磊,等.MATLAB神经网络43个案例分析[M].北京:北京航空航天大学出版社,2013 Wang X C, Shi F, Yu L, et al. MATLAB neural network 43 case analysis[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 2013(in Chinese)
    [11] 李小燕.灰色神经网络预测模型的优化研究[D].武汉:武汉理工大学,2009 Li X Y. Study on optimized grey neural network prediction models[D]. Wuhan:Wuhan University of Technology, 2009(in Chinese)
    [12] 张利彪,周春光,马铭,等.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291 Zhang L B, Zhou C G, Ma M, et al. Solutions of multi-objective optimization problems based on particle swarm optimization[J]. Journal of Computer Research and Development, 2004,41(7):1286-1291(in Chinese)
    [13] Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of 1995 IEEE International Conference on Neural Networks. Perth, WA, Australia:IEEE, 1995,4:1942-1948
    [14] Hu X H, Eberhart R. Multiobjective optimization using dynamic neighborhood particle swarm optimization[C]//Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu, HI, USA:IEEE, 2002,2:1677-1681
    [15] Tripathi P K, Bandyopadhyay S, Pal S K. Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients[J]. Information Sciences, 2007,177(22):5033-5049
  • 加载中
计量
  • 文章访问数:  221
  • HTML全文浏览量:  33
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-31
  • 刊出日期:  2017-08-05

目录

    /

    返回文章
    返回