留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进EMD阈值小波滤波方法

李其建 徐海波

李其建, 徐海波. 改进EMD阈值小波滤波方法[J]. 机械科学与技术, 2017, 36(8): 1175-1179. doi: 10.13433/j.cnki.1003-8728.2017.0805
引用本文: 李其建, 徐海波. 改进EMD阈值小波滤波方法[J]. 机械科学与技术, 2017, 36(8): 1175-1179. doi: 10.13433/j.cnki.1003-8728.2017.0805
Li Qijian, Xu Haibo. Improved Method of Threshold Wavelet Filter based on EMD[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(8): 1175-1179. doi: 10.13433/j.cnki.1003-8728.2017.0805
Citation: Li Qijian, Xu Haibo. Improved Method of Threshold Wavelet Filter based on EMD[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(8): 1175-1179. doi: 10.13433/j.cnki.1003-8728.2017.0805

改进EMD阈值小波滤波方法

doi: 10.13433/j.cnki.1003-8728.2017.0805
基金项目: 

国家自然科学基金重大研究计划项目(91420301)资助

详细信息
    作者简介:

    李其建(1988-),硕士研究生,研究方向为机器人学,13752597993@163.com

    通讯作者:

    徐海波(联系人),教授,博士,hbxu@mail.xjtu.edu.cn

Improved Method of Threshold Wavelet Filter based on EMD

  • 摘要: 下肢自主康复训练机器人中交流伺服电机电流信号噪声严重影响电机力矩辨识精度。为解决非线性非平稳信号的滤波去噪问题,提出一种基于经验模态分解(EMD)的改进阈值小波滤波算法。首先对EMD最佳去噪层数和阈值小波的阈值处理函数进行分析和改进,然后将两种改进方法相结合,最后对Matlab中的Heavy sine信号添加高斯噪声,分别利用改进方法和软、硬阈值等滤波方法进行去噪实验。仿真实验结果表明,改进算法能有效去除非线性非平稳信号中噪声信号。与EMD和阈值小波等其他滤波方法相比,本文滤波算法去噪后信噪比更大,均方根误差更小,滤波效果更好。
  • [1] 段青,李凤祥,田兆垒.一种改进的小波阈值信号去噪方法[J].计算机仿真,2009,26(4):348-351 Duan Q, Li F X, Tian Z L. An improved method for wavelet thresholding signal denoising[J]. Computer Simulation, 2009,26(4):348-351(in Chinese)
    [2] 曹京京,胡辽林,赵瑞.一种改进小波阈值函数的光纤光栅传感信号去噪方法[J].传感技术学报,2015,28(4):521-525 Cao J J, Hu L L, Zhao R. Improved threshold de-noising method of fiber bragg grating sensor signal based on wavelet transform[J]. Chinese Journal of Sensors and Actuators, 2015,28(4):521-525(in Chinese)
    [3] 齐翠丽.基于小波阈值法和模极大值法的语音去噪算法研究[D].秦皇岛:燕山大学,2012 Qi C L. The research of speech denoising algorithm based on wavelet threshold and the modulus maximum value[D]. Qinhuangdao:Yanshan University, 2012(in Chinese)
    [4] 杜修力,何立志,侯伟.基于经验模态分解(EMD)的小波阈值除噪方法[J].北京工业大学学报,2007,33(3):265-272 Du L X, He L Z, Hou W. A study of wavelet threshold denoising based on empirical mode decomposition (EMD)[J]. Journal of Beijing University of Technology, 2007,33(3):265-272(in Chinese)
    [5] 穆峰,常发亮,蒋沁宇.基于改进EMD算法的信号滤波[J].山东大学学报(工学版),2015,45(3):35-42 Mu F, Chang F L, Jiang Q Y. Signal filtering based on improved empirical mode decomposition[J]. Journal of Shandong University (Engineering Science), 2015,45(3):35-42(in Chinese)
    [6] 何正嘉,訾艳阳,张西宁.现代信号处理及工程应用[M].西安:西安交通大学出版社,2007 He Z J, Zi Y Y, Zhang X N. Modern signal processing and engineering applications[M]. Xi'an:Xi'an Jiaotong University Press, 2007(in Chinese)
    [7] Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004,11(2):112-114
    [8] 戴吾蛟,丁晓利,朱建军,等.基于经验模式分解的滤波去噪法及其在GPS多路径效应中的应用[J].测绘学报,2006,35(4):321-327 Dai W J, Ding X L, Zhu J J, et al. EMD filter method and its application in GPS multipath[J]. Acta Geodaetica et Cartographica Sinica, 2006,35(4):321-327(in Chinese)
    [9] 曾祥利,傅彦,青华平.一种基于小波变换的数据除噪方法[J].计算机应用,2005,25(9):2140-2142 Zeng X L, Fu Y, Qing H P. Denosing method based on wavelet transform[J]. Computer Applications, 2005,25(9):2140-2142(in Chinese)
    [10] 李树钰.改进的小波阈值去噪方法及其在MATLAB中的仿真[J].噪声与振动控制,2010,30(2):121-124 Li S Y. Improved wavelet threshold denoising method and its simulation using MATLAB[J]. Noise and Vibration Control, 2010,30(2):121-124(in Chinese)
    [11] 陈晓娟,王文婷,贾明超,等.基于小波熵自适应阈值的语音信号去噪新方法[J].计算机应用研究,2014,31(3):753-755 Chen X J, Wang W T, Jia M C, et al. New denoising method for speech signal based on wavelet entropy and adaptive threshold[J]. Application Research of Computers, 2014,31(3):753-755(in Chinese)
    [12] 钟建军,宋健,由长喜,等.基于信噪比评价的阈值优选小波去噪法[J].清华大学学报(自然科学版),2014,54(2):259-263 Zhong J J, Song J, Yong C X, et al. Wavelet de-noising method with threshold selection rules based on SNR evaluations[J]. Journal of Tsinghua University (Science & Technology), 2014,54(2):259-263(in Chinese)
  • 加载中
计量
  • 文章访问数:  286
  • HTML全文浏览量:  24
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-04
  • 刊出日期:  2017-08-05

目录

    /

    返回文章
    返回