留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种预测随机谱下裂纹扩展曲线的新方法

潘绍振 刘小冬 董江 兑红娜

潘绍振, 刘小冬, 董江, 兑红娜. 一种预测随机谱下裂纹扩展曲线的新方法[J]. 机械科学与技术, 2017, 36(7): 1143-1148. doi: 10.13433/j.cnki.1003-8728.2017.0726
引用本文: 潘绍振, 刘小冬, 董江, 兑红娜. 一种预测随机谱下裂纹扩展曲线的新方法[J]. 机械科学与技术, 2017, 36(7): 1143-1148. doi: 10.13433/j.cnki.1003-8728.2017.0726
Pan Shaozhen, Liu Xiaodong, Dong Jiang, Dui Hongna. A New Method for Predicting Crack Propagation Curve under Random Load Spectrum[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(7): 1143-1148. doi: 10.13433/j.cnki.1003-8728.2017.0726
Citation: Pan Shaozhen, Liu Xiaodong, Dong Jiang, Dui Hongna. A New Method for Predicting Crack Propagation Curve under Random Load Spectrum[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(7): 1143-1148. doi: 10.13433/j.cnki.1003-8728.2017.0726

一种预测随机谱下裂纹扩展曲线的新方法

doi: 10.13433/j.cnki.1003-8728.2017.0726
详细信息
    作者简介:

    潘绍振(1989-),硕士研究生,研究方向为飞机结构疲劳强度,pan_shz@163.com

    通讯作者:

    刘小冬(联系人),研究员,博士,liuxiaodong611@126.com

A New Method for Predicting Crack Propagation Curve under Random Load Spectrum

  • 摘要: 提出了一种基于贝叶斯理论在随机谱下采用Walker公式预测裂纹扩展曲线的新方法。首先,将Walker公式中裂纹扩展参数C、n视为随机变量,利用随机谱下的试验数据,基于贝叶斯理论建立其联合后验分布表达式;其次,巧妙地将随机谱下的裂纹扩展分析嵌入马尔科夫链蒙特卡洛(MCMC)方法中,实现对C、n后验分布的抽样;最后,将C、n后验分布均值代入Walker公式中,预测给定初始长度的裂纹在随机谱下的扩展曲线(a-N曲线)。利用7050-T7651和7050-T7452两种材料在随机谱下的裂纹扩展数据验证,发现仅需使用较少的试验数据,基于C、n后验均值预测的a-N曲线与试验a-N曲线就能良好吻合。研究结果对实现结构健康监控(SHM)中对结构未来损伤的准确预测,具有较大的工程应用价值。
  • [1] 董江.基于多元飞参数据的先进战斗机结构故障预测与健康管理(PHM)技术[R].成都:611所,2015 Dong J. Multiple flight parameters data based structural prognostic and health management technique for advanced fighter[R]. Chengdu:Chengdu Aircraft Design & Research Institute, 2015(in Chinese)
    [2] 董江.单机寿命监控系统及结构PHM技术应用研究实施方案[R].成都:611所,2014 Dong J. Implementation plans for individual aircraft life tracking system and structural prognostic and health management technique application study[R]. Chengdu:Chengdu Aircraft Design & Research Institute, 2014(in Chinese)
    [3] AN D, Choi J H, Kim N H. Options for prognostics methods:a review of data-driven and physics-based prognostics[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Boston, Massachusetts:AIAA, 2013:1-19
    [4] Wheeler O E. Crack growth under spectrum loading[R]. General Dynamics Report No. FZM 5602, 1970
    [5] Wheeler O E. Spectrum loading and crack growth[J]. Journal of Basic Engineering, 1972,94(1):181-186
    [6] Willenborg J, Engle R M, Wood H A. A crack growth retardation model using an effective stress concept[R]. Air Force Flight Dynamics Lab Wright-Patterson Afb Oh, 1971
    [7] Chang J B Engle R M, Szamossi M. An improved methodology for predicting random spectrum load interaction effects on fatigue crack growth[J]. Advances in Fracture Research, 1982:2761-2769
    [8] Newman J C Jr. A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading[M]//Chang J B, Hudson C M. Methods and Models for Predicting Fatigue Crack Growth under Random Loading. ASTM STP 748, 1981:53-84
    [9] 中国航空学会结构设计与强度专业委员会.随机载荷谱裂纹扩展寿命模型[M].西安:西北工业大学出版社,1989 Structure Design and Strength Specialized Committee of China Aviation Society. Crack propagation models under random load spectrum[M]. Xi'an:Publishing House of Northwestern Polytechnical University, 1989(in Chinese)
    [10] Annis C. Modeling high cycle fatigue with Markov chain Monte Carlo-a new look at an old idea[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colorado:AIAA, 2002:1-10
    [11] Douc R, Maire F, Olsson J. On the use of Markov chain Monte Carlo methods for the sampling of mixture models:a statistical perspective[J]. Statistics and Computing, 2015,25(1):95-110
    [12] Millwater H, Vazquez E, Wu J, et al. Sensitivity analysis of Markov chain Monte Carlo[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Orlando, Florida:AIAA, 2010:1-22
    [13] Coppe A, Haftka R T, Kim N H. Least squares-filtered Bayesian updating for remaining useful life estimation[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Orlando, Florida:AIAA, 2010:12-15
    [14] Mohanty S, Chattopadhyay A, Peralta P, et al. Bayesian statistic based multivariate Gaussian process approach for offline/online fatigue crack growth prediction[J]. Experimental Mechanics, 2011,51(6):833-843
    [15] Karandikar J M, Kim N H, Schmitz T L. Prediction of remaining useful life for fatigue-damaged structures using Bayesian inference[J]. Engineering Fracture Mechanics, 2012,96:588-605
    [16] Chen T. An integrated prognostic and diagnostic model for airframes[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver, Colorado:AIAA, 2011:1-25
    [17] Ling Y, Mahadevan S. Integration of structural health monitoring and fatigue damage prognosis[J]. Mechanical Systems and Signal Processing, 2012,28:89-104
    [18] 周源泉.确定无信息先验分布的几种方法[J].质量与可靠性,1987,(3):40-46 Zhou Y Q. Several methods for establishing non-informative prior distribution[J]. Quality and Reliability, 1987,(3):40-46(in Chinese)
  • 加载中
计量
  • 文章访问数:  254
  • HTML全文浏览量:  41
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-13
  • 刊出日期:  2017-07-05

目录

    /

    返回文章
    返回