留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蠕变时效成形工艺参数多目标优化

甘忠 张尧 冯爽 王亚茹 梁森森

甘忠, 张尧, 冯爽, 王亚茹, 梁森森. 蠕变时效成形工艺参数多目标优化[J]. 机械科学与技术, 2017, 36(7): 1116-1123. doi: 10.13433/j.cnki.1003-8728.2017.0722
引用本文: 甘忠, 张尧, 冯爽, 王亚茹, 梁森森. 蠕变时效成形工艺参数多目标优化[J]. 机械科学与技术, 2017, 36(7): 1116-1123. doi: 10.13433/j.cnki.1003-8728.2017.0722
Gan Zhong, Zhang Yao, Feng Shuang, Wang Yaru, Liang Sensen. Multi-objective Optimization of Processing Parameters for Creep Aging Forming via Particle Swarm Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(7): 1116-1123. doi: 10.13433/j.cnki.1003-8728.2017.0722
Citation: Gan Zhong, Zhang Yao, Feng Shuang, Wang Yaru, Liang Sensen. Multi-objective Optimization of Processing Parameters for Creep Aging Forming via Particle Swarm Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(7): 1116-1123. doi: 10.13433/j.cnki.1003-8728.2017.0722

蠕变时效成形工艺参数多目标优化

doi: 10.13433/j.cnki.1003-8728.2017.0722
详细信息
    作者简介:

    甘忠(1969-),副教授,博士,研究方向为精密钣金成形技术、飞机装配与连接技术等,ganzh@nwpu.edu.cn

Multi-objective Optimization of Processing Parameters for Creep Aging Forming via Particle Swarm Algorithm

  • 摘要: 提出了一种综合运用试验设计、响应曲面法及多目标优化的工艺参数优化方法,以成形效率和时效后材料的屈服强度为试验指标,以时效温度、时效时间和应力为试验变量,按Box-Behnken试验设计方案进行试验;利用试验结果构造试验指标和试验变量间的响应曲面并对其分析;结合响应曲面建立多目标优化模型;运用基于动态目标加权的具有量子行为的粒子群算法得到Pareto最优解集;提出一种最小归一化距离选解法,从非劣解集中选出最优解,得到综合最优工艺解187.9℃、6.42 h、250 MPa。按优化前后的工艺参数进行单曲率蠕变时效成形试验,相比优化前,成形效率由14.0%提高到19.4%,屈服强度由442.354 MPa提高到451.786 MPa,两个目标同时得到了优化,验证了工艺参数优化方法的有效性。
  • [1] Munroe J, Wilkins K, Gruber M. Integral airframe structures (IAS)-validated feasibility study of integrally stiffened metallic fuselage panels for reducing manufacturing costs[R]. NASA/CR-2000-209337, 2000
    [2] 《航空制造工程手册会》总编委会.航空制造工程手册-飞机钣金工艺[M].北京:航空工业出版社,1992:397-400 Aeronautical Manufacturing Technology Manual Ehief Editorial Committee. Aeronautical manufacturing technology manual-sheet metal forming[M]. Beijing:Aviation Industry Press, 1992:397-400(in Chinese)
    [3] 曾元松,黄遐.大型整体壁板成形技术[J].航空学报,2008,29(3):721-727 Zeng Y S, Huang X. Forming technologies of large integral panel[J]. Acta Aeronautica et Astronautica Sinica, 2008,29(3):721-727(in Chinese)
    [4] 常荣福.飞机钣金零件制造技术[M].北京:国防工业出版社,1992:94-117 Chang R F. Sheet metal forming technology[M]. Beijing:National Defense Industry Press, 1992:94-117(in Chinese)
    [5] Sallah M, Peddieson Jr J, Foroudastan S. A mathematical model of autoclave age forming[J]. Journal of Materials Processing Technology, 1991,28(1-2):211-219
    [6] Idem K, Peddieson J. Simulation of the age forming process[J]. Journal of Manufacturing Science and Engineering, 2005,127(1):165-172
    [7] Holman M C. Autoclave age forming large aluminum aircraft panels[J]. Journal of Mechanical Working Technology, 1989,20:477-488
    [8] Li H Y, Lu X C. Springback and tensile strength of 2A97 aluminum alloy during age forming[J]. Transactions of Nonferrous Metals Society of China, 2015,25(4):1043-1049
    [9] Xiao J J, Li D S, Li X Q, et al. Process parameters optimization of Ti-6Al-4V alloy sheet during hot stretch-creep forming[J]. Transactions of Nonferrous Metals Society of China, 2015,25(2):420-428
    [10] 孙光永,李光耀,陈涛,等.多目标粒子群优化算法在薄板冲压成形中的应用[J].机械工程学报,2009,45(5):153-159 Sun G Y, Li G Y, Chen T, et al. Application of multi-objective particle swarm optimization in sheet metal forming[J]. Journal of Mechanical Engineering, 2009,45(5):153-159(in Chinese)
    [11] Zhan L H, Li Y G, Huang M H. Effects of process parameters on mechanical properties and microstructures of creep aged 2124 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2014,24(7):2232-2238
    [12] 公茂果,焦李成,杨咚咚,等.于进化多目标优化算法研究[J].软件学报,2009,20(2):271-289 Gong M G, Jiao L C, Yang D D, et al. Research on evolutionary multi-objective optimization algorithms[J]. Journal of Software, 2009,20(2):271-289(in Chinese)
    [13] Shi Y, Eberhart R. A modified particle swarm optimizer[C]//Proceedings of 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence. Anchorage, AK:IEEE, 1998:69-73
    [14] 凌海风,周献中,江勋林,等.基于多目标粒子群优化算法的装备维修任务分配[J].计算机应用研究,2012,29(6):2090-2092 Ling H F, Zhou X Z, Jiang X L, et al. Study on equipment maintenance task assignment based on multi-objectives particle swarm optimization[J]. Application Research of Computers, 2012,29(6):2090-2092(in Chinese)
    [15] Jin Y C, Olhofer M, Sendho B. Dynamic weighted aggregation for evolutionary multi-objective optimization:why does it work and how?[C]//Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation. San Francisco, CA:Morgan Kaufmann, 2001:1042-1049
    [16] Engelbrecht A P.计算群体智能基础[M].谭营,译.北京:清华大学出版社,2009:27-84 Engelbrecht A P. Fundamentals of computational swarm intelligence[M]. Tan Y, Trans. Beijing:Tsinghua University Press, 2009:27-84(in Chinese)
  • 加载中
计量
  • 文章访问数:  165
  • HTML全文浏览量:  21
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-06
  • 刊出日期:  2017-07-05

目录

    /

    返回文章
    返回