留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成本体和CBR的数据挖掘建模技术及其在工艺规划中应用研究

郭渊 周敬勇

郭渊, 周敬勇. 集成本体和CBR的数据挖掘建模技术及其在工艺规划中应用研究[J]. 机械科学与技术, 2017, 36(4): 579-585. doi: 10.13433/j.cnki.1003-8728.2017.0414
引用本文: 郭渊, 周敬勇. 集成本体和CBR的数据挖掘建模技术及其在工艺规划中应用研究[J]. 机械科学与技术, 2017, 36(4): 579-585. doi: 10.13433/j.cnki.1003-8728.2017.0414
Guo Yuan, Zhou Jingyong. Data Mining Modeling and its Application in CAPP by Integrating Ontology and CBR[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(4): 579-585. doi: 10.13433/j.cnki.1003-8728.2017.0414
Citation: Guo Yuan, Zhou Jingyong. Data Mining Modeling and its Application in CAPP by Integrating Ontology and CBR[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(4): 579-585. doi: 10.13433/j.cnki.1003-8728.2017.0414

集成本体和CBR的数据挖掘建模技术及其在工艺规划中应用研究

doi: 10.13433/j.cnki.1003-8728.2017.0414
基金项目: 

安徽高校自然科学基金重点项目(KJ2017A538)与中国博士后基金项目(2015M571920)资助

详细信息
    作者简介:

    郭渊(1979-),讲师,博士,研究方向为智能化制造,gongpingshizhe@126.com

Data Mining Modeling and its Application in CAPP by Integrating Ontology and CBR

  • 摘要: 利用数据挖掘技术解决智能CAPP系统知识获取问题时面临着应用门槛高的严重问题。为了克服该问题,使数据挖掘技术能方便地被普通用户应用,提出了集成本体和CBR技术进行数据挖掘建模从而控制数据挖掘自动化进行的方法。首先建立了基于本体语义的工艺规划数据挖掘事例库,然后确立了本体语义理解型推理机制和相应的概念相似度算法,并初步探讨了数据挖掘事例的综合评价方法及修改技术。最后,以典型的机加工零件为应用实例对建议方法进行验证。试验证明本文建议的方法通过智能化建模控制数据挖掘过程自动化进行,克服了传统数据挖掘建模需要领域专家和知识工程师协作的局限,显著降低了数据挖掘技术的使用门槛。
  • [1] 王军强,周雪明,郭银洲.可扩展制造执行系统软件体系结构设计与实现[J].计算机集成制造系统,2014,20(5):1035-1050 Wang J Q, Zhou X M, Guo Y Z. Design and implementation of software architecture for extensible manufacturing execution system[J]. Computer Integrated Manufacturing Systems, 2014,20(5):1035-1050 (in Chinese)
    [2] Wirth R, Hipp J. CRISP-DM: towards a standard process model for data mining[C]//Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining. Manchester, UK, 2000:29-39
    [3] Kalousis A, Theoharis T. NOEMON: design, implementation and Performance results of an intelligent assistant for classifier selection[J]. Intelligent Data Analysis, 1999,3(5):319-337
    [4] Broadley M R, White P J, Hammond J P, et al. Zinc in plants[J]. New Phytologist, 2007,173(4):677-702
    [5] Lin F Y, McClean S. A data mining approach to the prediction of corporate failure[J]. Knowledge-Based System, 2001,14(3-4):189-195
    [6] 高雅田.基于MAS的数据挖掘模型自动选择方法研究[D].黑龙江大庆:东北石油大学,2011 Gao Y T. Research on automatic selection methods of data mining models based on MAS[D]. Heilongjiang Daqing: Northeast Petroleum University, 2011 (in Chinese)
    [7] Xu X, Wang L H, Newman S T. Computer-aided process planning-A critical review of recent developments and future trends[J]. International Journal of Computer Integrated Manufacturing, 2011,24(1):1-31
    [8] 卢其福,解建仓,贺鑫焱,等.基于CBR的防汛知识获取研究[J].水利科技与经济,2008,14(2):87-91 Lu Q F, Xie J C, He X Y, et al. Research on the flood control knowledge acquisition based on CBR[J]. Water Conservancy Science and Technology and Economy, 2008,14(2):87-91 (in Chinese)
    [9] Vieira M A, Formaggio A R, Rennó C D, et al. Object Based Image Analysis and Data Mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas[J]. Remote Sensing of Environment, 2012,123:553-562
    [10] Guo Y, Peng Y H, Hu J. Research on high creative application of case-based reasoning system on engineering design[J]. Computers in Industry, 2013,64(1):90-103
    [11] Sánchez D, Batet M. A semantic similarity method based on information content exploiting multiple ontologies[J]. Expert Systems with Applications, 2013,40(4):1393-1399
    [12] Jiang J J, Conrath D W. Semantic similarity based on corpus statistics and lexical taxonomy[C]//Proceedings of International Conference Research on Computational Linguistics. Taiwan, 1997
    [13] Kobti Z, Chen D, Baljeu A. A domain ontology model for mould design automation[M]//Farzindar A, Keelj V. Advances in Artificial Intelligence. Berlin Heidelberg: Springer, 2010:336-339
    [14] Sánchez D, Batet M, Isern D. Ontology-based information content computation[J]. Knowledge-Based Systems, 2011,24(2):297-303
  • 加载中
计量
  • 文章访问数:  166
  • HTML全文浏览量:  25
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-14
  • 刊出日期:  2017-04-05

目录

    /

    返回文章
    返回