留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部费歇尔判别分值在滚动轴承故障诊断中的应用

王雪冬 赵荣珍 邓林峰 张亚龙

王雪冬, 赵荣珍, 邓林峰, 张亚龙. 局部费歇尔判别分值在滚动轴承故障诊断中的应用[J]. 机械科学与技术, 2017, 36(2): 273-278. doi: 10.13433/j.cnki.1003-8728.2017.0219
引用本文: 王雪冬, 赵荣珍, 邓林峰, 张亚龙. 局部费歇尔判别分值在滚动轴承故障诊断中的应用[J]. 机械科学与技术, 2017, 36(2): 273-278. doi: 10.13433/j.cnki.1003-8728.2017.0219
Wang Xuedong, Zhao Rongzhen, Deng Linfeng, Zhang Yalong. Application of Localized Fisher Discriminant Score in Fault Diagnosis of Rolling Bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2): 273-278. doi: 10.13433/j.cnki.1003-8728.2017.0219
Citation: Wang Xuedong, Zhao Rongzhen, Deng Linfeng, Zhang Yalong. Application of Localized Fisher Discriminant Score in Fault Diagnosis of Rolling Bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2): 273-278. doi: 10.13433/j.cnki.1003-8728.2017.0219

局部费歇尔判别分值在滚动轴承故障诊断中的应用

doi: 10.13433/j.cnki.1003-8728.2017.0219
基金项目: 

国家自然科学基金项目(51675253)与教育部高等学校博士学科点专项科研基金项目(20136201110004)资助

详细信息
    作者简介:

    王雪冬(1988-),硕士,研究方向为旋转机械故障诊断,wang6493@126.com

    通讯作者:

    赵荣珍(联系人),教授,博士生导师,zhaorongzhen@lut.cn

Application of Localized Fisher Discriminant Score in Fault Diagnosis of Rolling Bearing

  • 摘要: 为精确、高效地识别出滚动轴承不同程度、不同类型的故障,提出一种基于局部费歇尔判别分值(Localized fisher discriminant score,LFDS)的故障诊断方法。该方法首先从时域、频域及时频域构造原始故障特征集;然后运用LFDS选择出其中最能反映故障本质的敏感特征子集;最后将选择出的特征子集输入到最小二乘支持向量机进行模式识别。用滚动轴承一组故障特征数据集进行验证。结果表明,经LFDS选择出的特征能显著表现出不同故障类别间的差异。
  • [1] 张龙,张磊,熊国良,等.基于多尺度熵的滚动轴承Elman神经网络故障诊断方法[J].机械科学与技术,2014,33(12):1854-1858 Zhang L, Zhang L, Xiong G L, et al. Rolling bearing fault diagnosis based on multiscale entropy and Elman neural network[J]. Mechanical Science and Technology for Aerospace Engineering, 2014,33(12):1854-1858 (in Chinese)
    [2] 欧璐,于德介.基于监督拉普拉斯分值和主元分析的滚动轴承故障诊断[J].机械工程学报,2014,50(5):88-94 Ou L, Yu D J. Rolling bearing fault diagnosis based on supervised Laplaian score and principal component analysis[J]. Journal of Mechanical Engineering, 2014,50(5):88-94 (in Chinese)
    [3] Liu H, Yu L. Toward integrating feature selection algorithms for classification and clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(4):491-502
    [4] Dy J G, Brodley C E. Feature selection for unsupervised learning[J]. Journal of Machine Learning Research, 2004,5:845-889
    [5] Kohavi R, John G H. Wrappers for feature subset selection[J]. Artificial Intelligence, 1997,97(1-2):273-324
    [6] He X F, Cai D, Niyogi P. Laplacian score for feature selection[M]. Cambridge, MA:MIT Press, 2005:249-256
    [7] Liao B, Jiang Y, Liang W, et al. Gene selection using locality sensitive Laplacian score[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014,11(6):1146-1156
    [8] Yilmaz E. An expert system based on fisher score and LS-SVM for cardiac arrhythmia diagnosis[J]. Computational and Mathematical Methods in Medicine, 2013,2013:849674
    [9] 欧璐,于德介.基于拉普拉斯分值和模糊C均值聚类的滚动轴承故障诊断[J].中国机械工程,2014,25(10):1352-1357 Ou L, Yu D J. Rolling bearing fault diagnosis based on Laplacian score and fuzzy C-means clustering[J]. China Mechanical Engineering, 2014,25(10):1352-1357 (in Chinese)
    [10] Huang H, Feng H L, Peng C Y. Complete local Fisher discriminant analysis with Laplacian score ranking for face recognition[J]. Neurocomputing, 2012,89:64-77
    [11] Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis[J]. Journal of Machine Learning Research, 2007,8:1027-1061
    [12] 万书亭,佟海侠,董炳辉.基于最小二乘支持向量机的滚动轴承故障诊断[J].振动、测试与诊断,2009,30(2):149-152 Wan S T, Tong H X, Dong B H. Bearing fault diagnosis using wavelet packet transform and least square support vector machines[J]. Journal of Vibration, Measurement & Diagnosis, 2009,30(2):149-152 (in Chinese)
    [13] 郭金玉,刘玉芹,苑玮琦.基于核局部Fisher判别分析的掌纹识别[J].光电子·激光,2012,23(2):354-358 Guo J Y, Liu Y Q, Yuan W Q. Palmprint recognition based on kernel localized Fisher discriminant analysis[J]. Journal of Optoelectronics·Laser, 2012,23(2):354-358 (in Chinese)
    [14] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999,9(3):293-300
    [15] 张进,冯志鹏,褚福磊.滚动轴承故障特征的时间-小波能量谱提取方法[J].机械工程学报,2011,47(17):44-49 Zhang J, Feng Z P, Chu F L. Extraction of rolling bearing fault feature based on time-wavelet energy spectrum[J]. Journal of Mechanical Engineering, 2011,47(17):44-49 (in Chinese)
    [16] 王德明,王莉,张广明.基于遗传BP神经网络的短期风速预测模型[J].浙江大学学报(工学版),2012,46(5):837-841 Wang D M, Wang L, Zhang G M. Short-term wind speed forecast model for wind farms based on genetic BP neural network[J]. Journal of Zhejiang University (Engineering Science), 2012,46(5):837-841 (in Chinese)
  • 加载中
计量
  • 文章访问数:  148
  • HTML全文浏览量:  32
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-15
  • 刊出日期:  2017-02-05

目录

    /

    返回文章
    返回