留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

感应电场作用下神经元模型的放电机制及稳定性分析

都琳 曹子露 张莹

都琳, 曹子露, 张莹. 感应电场作用下神经元模型的放电机制及稳定性分析[J]. 机械科学与技术, 2017, 36(2): 202-206. doi: 10.13433/j.cnki.1003-8728.2017.0207
引用本文: 都琳, 曹子露, 张莹. 感应电场作用下神经元模型的放电机制及稳定性分析[J]. 机械科学与技术, 2017, 36(2): 202-206. doi: 10.13433/j.cnki.1003-8728.2017.0207
Du Lin, Cao Zilu, Zhang Ying. Discharge Mechanism and Stability Analysis of Neuron Model Exposed to Induced Electric Field[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2): 202-206. doi: 10.13433/j.cnki.1003-8728.2017.0207
Citation: Du Lin, Cao Zilu, Zhang Ying. Discharge Mechanism and Stability Analysis of Neuron Model Exposed to Induced Electric Field[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2): 202-206. doi: 10.13433/j.cnki.1003-8728.2017.0207

感应电场作用下神经元模型的放电机制及稳定性分析

doi: 10.13433/j.cnki.1003-8728.2017.0207
基金项目: 

国家自然科学基金项目(11672233,11302169,11672232)与中央高校基本科研业务费专项资金项目资助

详细信息
    作者简介:

    都琳(1981-),副教授,博士,研究方向为神经动力学,lindu@nwpu.edu.cn

Discharge Mechanism and Stability Analysis of Neuron Model Exposed to Induced Electric Field

  • 摘要: 以感应电场作用下的Morris-Lecar(ML)神经元模型为研究对象,研究了ML神经元的平衡态及稳定性。首先基于感应电场引起的膜极化电压ΔV的变化,给出了三类神经元的平衡态及其分岔行为。通过引入转换相图与平衡曲线,揭示了感应电场作用下神经元的放电机制。结果发现:分岔可引起神经元膜电压V绕平衡曲线运动,并产生簇发放电、峰放电、阈下放电现象。同时,在周期性正弦感应电场的激励下,神经元模型可产生不同的周期放电模式。极低频电磁场激励下的神元放电机制可为电磁场治疗神经疾病提供一定的理论参考,对大脑认知有潜在的应用价值。
  • [1] Wang H T, Wang L F, Yu L C, et al. Response of Morris-Lecar neurons to various stimuli[J]. Physical Review E, 2010,83(2):021915
    [2] Lee S G, Kim S. Bifurcation analysis of mode-locking structure in a Hodgkin-Huxley neuron under sinusoidal current[J]. Physical Review E, 2006,73(4):041924
    [3] Modolo J, Thoms A W, Stodilka R Z, et al. Modulation of neuronal activity with extremely low-frequency magnetic fields:insights from biophysical modeling[C]//2010 IEEE Fifth International Conference on Bio-Inspired Computing:Theories and Applications, Changsha:IEEE, 2010
    [4] Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation[J]. Annual Review of Biomedical Engineering, 2007,9:527-565
    [5] Walsh V, Cowey A. Transcranial magnetic stimulation and cognitive neuroscience[J]. Nature Reviews Neuroscience, 2000,1(1):73-80
    [6] Yi G S, Wang J, Wei X L, et al. Dynamic analysis of Hodgkin's three classes of neurons exposed to extremely low-frequency sinusoidal induced electric field[J]. Applied Mathematics and Computation, 2014,231:100-110
    [7] 金淇涛,王江,伊国胜,等.经颅磁刺激感应外电场作用下最小神经元模型放电起始动态机理分析[J].物理学报,2012,61(11):517-526 Jin Q T, Wang J, Yi G S, et al. Action potential initial dynamical mechanism analysis in a minimum neuron model exposure to exposure to TMS induced electric field[J]. Acta Physica Sinica, 2012,61(11):517-526 (in Chinese)
    [8] Izhikevich E M. Dynamical systems in neuroscience:The Geometry of Excitability and Bursting[M]. London:The MIT Press, 2007
    [9] 刑雅清,陈小可,张正娣,等.多平衡态下簇发振荡产生机理及吸引子结构分析[J].物理学报,2016,65(9):1-10 Xing Y Q, Chen X K, Zhang Z D, et al. Mechanism of bursting oscillations with multiple equilibrium states and the analysis of the structures of the attractors[J]. Acta Physica Sinica, 2016,65(9):1-10 (in Chinese)
    [10] Prescott S A, Koninck Y D, Sejnowski T J. Biophysical basis for three distinct dynamical mechanisms of action potential initiation[J]. PLoS Computational Biology, 2008,4(10):e1000198
    [11] Yi G S, Wang J, Han C X, et al. Spiking patterns of a minimal neuron to ELF sinusoidal electric field[J]. Applied Mathematical Modelling, 2012,36(8):3673-3684
    [12] Giannì M, Liberti M, Apollonio F, et al. Modeling electromagnetic fields detectability in a HH-like neuronal system:stochastic resonance and window behavior[J]. Biological Cybernetics, 2006,94(2):118-127
    [13] Schwan H P. Electrical properties of tissue and cell suspensions[J]. Advances in Biological and Medical Physics, 1957,5:147-209
    [14] Bedard C, Kröger H, Destexhe A. Model of low-pass filtering of local field potentials in brain tissue[J]. Physical Review E, 2006,73(5):051911
    [15] Radman T, Ramos R L, Brumberg J C, et al. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro[J]. Brain Stimulation, 2009,2(4):215-228
  • 加载中
计量
  • 文章访问数:  349
  • HTML全文浏览量:  39
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-05
  • 刊出日期:  2017-02-05

目录

    /

    返回文章
    返回