留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机敏约束层阻尼薄板有限元建模与实验研究

鲁俊 王攀 邓兆祥 李政 孔德飞

鲁俊, 王攀, 邓兆祥, 李政, 孔德飞. 机敏约束层阻尼薄板有限元建模与实验研究[J]. 机械科学与技术, 2016, 35(10): 1499-1504. doi: 10.13433/j.cnki.1003-8728.2016.1005
引用本文: 鲁俊, 王攀, 邓兆祥, 李政, 孔德飞. 机敏约束层阻尼薄板有限元建模与实验研究[J]. 机械科学与技术, 2016, 35(10): 1499-1504. doi: 10.13433/j.cnki.1003-8728.2016.1005
Lu Jun, Wang Pan, Deng Zhaoxiang, Li Zheng, Kong Defei. Finite Element Modeling and Experiment Research of Smart Constrained Layer Damping Thin Plate[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(10): 1499-1504. doi: 10.13433/j.cnki.1003-8728.2016.1005
Citation: Lu Jun, Wang Pan, Deng Zhaoxiang, Li Zheng, Kong Defei. Finite Element Modeling and Experiment Research of Smart Constrained Layer Damping Thin Plate[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(10): 1499-1504. doi: 10.13433/j.cnki.1003-8728.2016.1005

机敏约束层阻尼薄板有限元建模与实验研究

doi: 10.13433/j.cnki.1003-8728.2016.1005
基金项目: 

中央高校基本科研业务费(CDJZR12110006)与国家“863”计划项目(2012AA111803)资助

详细信息
    作者简介:

    鲁俊(1989-),硕士研究生,研究方向为振动分析与控制,Junlu_auto@163.com

    通讯作者:

    王攀(联系人),副教授,博士,硕士生导师,wangpan@cqu.edu.cn

Finite Element Modeling and Experiment Research of Smart Constrained Layer Damping Thin Plate

  • 摘要: 基于Kichhoff薄板理论,考虑基层、粘弹性层和压电层的耦合运动及位移协调关系,采用有限元法建立了机敏约束层阻尼结构的单元动力学方程。在单元组集后的系统总动力学方程中将基层的弹性结构阻尼以比例阻尼的形式给出,同时为表征粘弹性材料随温度、频率变化的力学特性,结合GHM(Golla-Hughes-Mctavish)模型推导出了结构的有限元总动力学分析方程。以局部覆盖机敏约束层阻尼的对边固支板铝板为实例,通过动力学参数理论计算与模态试验对比分析,结果表明:考虑基层阻尼后的分析结果明显好于不考虑基层阻尼的分析结果,与实验更接近;在总动力学方程中引入GHM模型,可以用相对较少的耗散自由度得到较准确的有限元动力学模型,减少了计算工作量。
  • [1] Ansari M, Khajepour A, Esmailzadeh E. Application of level set method to optimal vibration control of plate structures[J]. Journal of Sound and Vibration, 2013,332(4):687-700
    [2] Kumar R S, Ray M C. Active control of geometrically nonlinear vibrations of doubly curved smart sandwich shells using 1-3 piezoelectric composites[J]. Composite Structures, 2013,105:173-187
    [3] Kumar N, Singh S P. Vibration control of curved panel using smart damping[J]. Mechanical Systems and Signal Processing, 2012,30:232-247
    [4] 常冠军.粘弹性阻尼材料[M].北京:国防工业出版社,2012 Chang G J. Viscoelastic damping materials[M]. Beijing:National Defence Industry Press, 2012(in Chinese)
    [5] Kumar S, Kumar R. Theoretical and experimental vibration analysis of rotating beams with combined ACLD and stressed layer damping treatment[J]. Applied Acoustics, 2013,74(5):675-693
    [6] Shi Y M, Hua H X, Sol H. The finite element analysis and experimental study of beams with active constrained layer damping treatments[J]. Journal of Sound and Vibration, 2004,278(1-2):343-363
    [7] Wu D F, Huang L, Pan B, et al. Experimental study and numerical simulation of active vibration control of a highly flexible beam using piezoelectric intelligent material[J]. Aerospace Science and Technology, 2014,37:10-19
    [8] 李军强,刘宏昭,王忠民.线性粘弹性本构方程及其动力学应用研究综述[J].振动与冲击,2005,24(2):116-121 Li J Q, Liu H Z, Wang Z M. Review on the linear constitutive equation and its dynamics applications to viscoelastic materials[J]. Journal of Vibration and Shock, 2005,24(2):116-121(in Chinese)
    [9] Trindade M A. Reduced-order finite element models of viscoelastically damped beams through internal variables projection[J]. Journal of Vibration and Acoustics, 2006,128(4):501-508
    [10] Wang Y, Inman D J. Finite element analysis and experimental study on dynamic properties of a composite beam with viscoelastic damping[J]. Journal of Sound and Vibration, 2013,332(23):6177-6191
    [11] Golla D F, Hughes P C. Dynamics of viscoelastic structuresa time-domain, finite element formulation[J]. Applied Mechanics, 1985,52(4):897-906
    [12] McTavish D J, Hughes P C. Modeling of linear viscoelastic space structures[J]. Journal of Vibration and Acoustics, 1993,115(1):103-110
    [13] 刘天雄,华宏星,陈兆能,等.约束层阻尼板的有限元建模研究[J].机械工程学报,2002,38(4):108-114 Liu T X, Hua H X, Chen Z N, et al. Study on the model of finite element of constrained layer damping plate[J]. Chinese Journal of Mechanical Engineering, 2002,38(4):108-114(in Chinese)
    [14] 曹友强,邓兆祥,王攀,等.机敏约束层阻尼减振板耦合系统有限元模型[J].重庆大学学报,2012,35(10):9-16 Cao Y Q, Deng Z X, Wang P, et al. Finite element model of coupled systems for vibration reduction plates with smart constrained layer damping[J]. Journal of Chongqing University, 2012,35(10):9-16(in Chinese)
    [15] 石银明,华宏星,傅志方.粘弹性材料的微振子模型研究[J].振动工程学报,2001,14(1):100-104 Shi Y M, Hua H X, Fu Z F. The mini-oscillator model research for viscoelastic material[J]. Journal of Vibration Engineering, 2001,14(1):100-104(in Chinese)
    [16] 张亮,杜海平,石银明,等.ZN-1型粘弹性材料的GHM模型参数确定(英文)[J].稀有金属材料与工程,2002,31(2):92-95 Zhang L, Du H P, Shi Y M, et al. Parametric determination for GHM of ZN-1 viscoelastic material[J]. Rare Metal Materials and Engineering, 2002,31(2):92-95(in Chinese)
  • 加载中
计量
  • 文章访问数:  139
  • HTML全文浏览量:  23
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-16
  • 刊出日期:  2016-10-05

目录

    /

    返回文章
    返回