留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器人姿态插补的四元数直接逆解方法

成津赛 张秋菊

成津赛, 张秋菊. 机器人姿态插补的四元数直接逆解方法[J]. 机械科学与技术, 2016, 35(9): 1354-1358. doi: 10.13433/j.cnki.1003-8728.2016.0908
引用本文: 成津赛, 张秋菊. 机器人姿态插补的四元数直接逆解方法[J]. 机械科学与技术, 2016, 35(9): 1354-1358. doi: 10.13433/j.cnki.1003-8728.2016.0908
Cheng Jinsai, Zhang Qiuju. Orientations Interpolation Algorithm for Robot with Quaternion-based Direct Inverse Kinematics[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(9): 1354-1358. doi: 10.13433/j.cnki.1003-8728.2016.0908
Citation: Cheng Jinsai, Zhang Qiuju. Orientations Interpolation Algorithm for Robot with Quaternion-based Direct Inverse Kinematics[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(9): 1354-1358. doi: 10.13433/j.cnki.1003-8728.2016.0908

机器人姿态插补的四元数直接逆解方法

doi: 10.13433/j.cnki.1003-8728.2016.0908
基金项目: 

教育部中央高校基本科研业务专项基金重点项目(JUSRP51316B)资助

详细信息
    作者简介:

    成津赛(1989-),硕士研究生,研究方向为机器人技术,wxjncjs@163.com

    通讯作者:

    张秋菊(联系人),教授,博士生导师,zhangqiuj@jiangnan.edu.cn

Orientations Interpolation Algorithm for Robot with Quaternion-based Direct Inverse Kinematics

  • 摘要: 针对欧拉角姿态插补方法中存在奇异性以及姿态过渡不平稳的问题,采用四元数表示机器人姿态,对起点和终点采用四元数球面线性插值的方法来进行机器人姿态插补;并给出了四元数直接逆解求姿态角的方法,舍去了姿态插补点须转化为位姿变换矩阵的过程,提高了机器人控制系统软件的运行效率。以FANUC LR Mate 100i机器人为实例进行求解,对比位姿变换矩阵和四元数各自所求的逆解,可得两种方法算出的结果一致,验证了算法的可行性。
  • [1] 孔民秀,季晨.基于单位四元数机器人姿态插补算法[J].新型工业化,2013,3(8):105-112 Kong M X, Ji C. Orientations interpolation algorithm for robot with unit quaternion[J]. New Industrialization Straregy, 2013,3(8):105-112 (in Chinese)
    [2] 马艳红,胡军.姿态四元数相关问题[J].空间控制技术与应用,2008,34(3):55-60 Ma Y H, Hu J. On attitude quaternion[J]. Aerospace Control and Application, 2008,34(3):55-60 (in Chinese)
    [3] 季晨.工业机器人姿态规划及轨迹优化研究[D].哈尔滨:哈尔滨工业大学,2013 Ji C. Research on orientation interpolation and optimal trajectory of industrial robot[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese)
    [4] 郭锐锋,李培楠,黄艳,等.四元数五轴联动插补算法的研究[J].小型微型计算机系统,2008,29(7):1362-1365 Guo R F, Li P N, Huang Y, et al. Research on interpolation algorithm for five-axis CNC machines[J]. Journal of Chinese Computer Systems, 2008,29(7):1362-1365 (in Chinese)
    [5] Xian B, de Queiroz M S, Dawson D, et al. Task-space tracking control of robot manipulators via quaternion feedback[J]. IEEE Transactions on Robotics and Automation, 2004,20(1):160-167
    [6] Yun X P, Bachmann E R. Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking[J]. IEEE Transactions on Robotics, 2006,22(6):1216-1227
    [7] 沈军行,孙守迁,潘云鹤.从运动捕获数据中提取关键帧[J].计算机辅助设计与图形学报,2004,16(5):719-723 Shen J X, Sun S Q, Pan Y H. Key-frame extraction from motion capture data[J]. Journal of Computer-Aided Design & Computer Graphics, 2004,16(5):719-723 (in Chinese)
    [8] Shoemake K. Animating rotation with quaternion curves[J]. ACM SIGGRAPH Computer Graphics, 1985,19(3):245-254
    [9] 刘放,汪鎏,胡俊,等.基于四元数的空间圆弧插补算法[J].机械科学与技术,2009,28(11):1425-1428 Liu F, Wang L, Hu J, et al. A new spatial arc interpolation method using quaternion interpolation algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2009,28(11):1425-1428 (in Chinese)
    [10] 任秉银,梁兆东,孔民秀.机械手空间圆弧位姿轨迹规划算法的实现[J].哈尔滨工业大学学报,2012,44(7):27-31 Ren B Y, Liang Z D, Kong M X. An algorithm for the interpolation of circular trajectories of manipulators[J]. Journal of Harbin Institute of Technology, 2012,44(7):27-31 (in Chinese)
    [11] 葛浏昊,孟正大.基于四元数法的喷涂机器人姿态插补[J].中国科学技术大学学报,2012,42(S):108-112 Ge L H, Meng Z D. Posture interpolation of painting robot based on quaternion method[J]. Journal of University of Science and Technology of China, 2012,42(S):108-112 (in Chinese)
    [12] 刘松国,朱世强,王宣银,等.基于四元数和B样条的机械手平滑姿态规划器[J].浙江大学学报(工学版),2009,43(7):1192-1196,1202 Liu S G, Zhu S Q, Wang X Y, et al. Smooth orientation planner for manipulators based on quaternion and B-spline[J]. Journal of Zhejiang University (Engineering Science), 2009,43(7):1192-1196,1202 (in Chinese)
    [13] 乔正,栾楠,张诗雷.基于四元数的手术机器人圆弧轨迹规划[J].机械与电子,2014,(3):61-64 Qiao Z, Luan N, Zhang S L. Circular trajectory planning for A 7-DOF surgical robot[J]. Machinery & Electronics, 2014,(3):61-64 (in Chinese)
    [14] Hu C, Meng M Q H, Mandal M, et al. Robot rotation decomposition using quaternions[C]//Proceedings of 2006 International Conference on Mechatronics and Automation, Luoyang, Henan: IEEE, 2006:1158-1163
    [15] Chang S W, Chiang Y T, Chang F R. SLERP-based optimal TRIAD algorithm[C]//Proceedings of SICE Annual Conference, Taipei, China: IEEE, 2010:331-335
    [16] 蔡自兴.机器人学基础[M].北京:机械工业出版社,2009:33-35 Cai Z X. Fundamentals of robotics[M]. Beijing: China Machine Press, 2009:33-35 (in Chinese)
  • 加载中
计量
  • 文章访问数:  370
  • HTML全文浏览量:  26
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-18
  • 刊出日期:  2016-09-05

目录

    /

    返回文章
    返回