留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4-SPS/SP并联机构的奇异位形分析

殷开明 原大宁

殷开明, 原大宁. 4-SPS/SP并联机构的奇异位形分析[J]. 机械科学与技术, 2016, 35(9): 1343-1348. doi: 10.13433/j.cnki.1003-8728.2016.0906
引用本文: 殷开明, 原大宁. 4-SPS/SP并联机构的奇异位形分析[J]. 机械科学与技术, 2016, 35(9): 1343-1348. doi: 10.13433/j.cnki.1003-8728.2016.0906
Yin Kaiming, Yuan Daning. Singular Configuration Analysis of 4-SPS/SP Parallel Mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(9): 1343-1348. doi: 10.13433/j.cnki.1003-8728.2016.0906
Citation: Yin Kaiming, Yuan Daning. Singular Configuration Analysis of 4-SPS/SP Parallel Mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(9): 1343-1348. doi: 10.13433/j.cnki.1003-8728.2016.0906

4-SPS/SP并联机构的奇异位形分析

doi: 10.13433/j.cnki.1003-8728.2016.0906
基金项目: 

国家自然科学基金项目(51275404)与陕西高校省级重点实验室科研项目(2010JS080)资助

详细信息
    作者简介:

    殷开明(1988-),硕士研究生,研究方向为并联机构及机构学,jackberlin@126.com

    通讯作者:

    原大宁(联系人),教授,daningyuan@163.com

Singular Configuration Analysis of 4-SPS/SP Parallel Mechanism

  • 摘要: 对4-SPS/SP并联机构的运动学和静力学进行分析,得到该机构的降维运动学和静力学奇异位形曲线。对比这两组曲线发现它们相差了β=±90°两条直线。通过对机构运动Jacobian矩阵分析,发现该±90°是欧拉角的“奇点”,并非该并联机构的奇异位形,并运用实例加以验证。在排除该非奇异位形曲线后,根据两种方法得到的奇异位形是相同的,并对其物理意义进行了解释说明。运用静力Jacobian矩阵得到了该机构的姿态奇异位形曲面,找到了该机构的动平台只绕Z轴旋转时存在的一组特殊的奇异位形,并根据力螺旋相关性修改动平台参数避免该组奇异位形,改善该机构的运动性能。
  • [1] Merlet J P. Parallel manipulators part 2: singular configurations and Grassmann Geometry[R]. Technology Report. Sophia Antipolis, France: INRIA, 1988:66-70
    [2] Gosselin C M, Angeles J. Singularity analysis of closed-loop kinematic chains[J]. IEEE Transactions on Robotics and Automation, 1990,6(3):281-290
    [3] Gosselin C M, Wang J G. Singularity loci of planar parallel manipulators with revolute actuators[J]. Robotics and Autonomous Systems, 1997,21(4):377-398
    [4] Huang Z, Chen L H. Singularity principle and distribution of 6-3 stewart parallel manipulator[C]//ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Canada: ASME, 2002
    [5] Fang H R, Fang Y F, Zhang K T. Reciprocal screw theory based singularity analysis of a novel 3-dof parallel manipulator[J]. Chinese Journal of Mechanical Engineering, 2012,25(4):647-653
    [6] 沈辉,吴学忠,李圣怡,等.并联机构的奇异位形分析及冗余驱动控制方法[J].国防科技大学学报,2002,24(2):91-94 Shen H, Wu X Z, Li S Y, et al. Analysis of singularity and redundantly control of parallel manipulators[J]. Journal of National University of Defense Technology, 2002,24(2):91-94 (in Chinese)
    [7] Collins C L. Singularity analysis and design of parallel manipulators[D]. California: University of California, 1997
    [8] 王庚祥,原大宁,刘宏昭,等.空间4-SPS/CU并联机构运动学分析[J].农业机械学报,2012,43(3):207-212,199 Wang G X, Yuan D N, Liu H Z, et al. Kinematics analysis of spatial 4-SPS/CU parallel mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012,43(3):207-212,199 (in Chinese)
    [9] 黄真,赵永生,赵铁石.高等空间机构学[M].北京:北京高等教育出版社,2006 Huang Z, Zhao Y S, Zhao T S. Advanced spatial mechanism[M]. Beijing: Higher Education Press, 2006 (in Chinese)
    [10] 石岩,路懿.一种2SPS+RPRR并联机构的运动学与工作空间分析[J].燕山大学学报,2010,34(1):18-23 Shi Y, Lu Y. Kinematics and workspace analysis of a 2SPS+RRRR parallel manipulator[J]. Journal of Yanshan University, 2010,34(1):18-23 (in Chinese)
    [11] Lu Y, Hu B. Unification and simplification of velocity/acceleration of limited-dof parallel manipulators with linear active legs[J]. Mechanism and Machine Theory, 2008,43(9):1112-1128
    [12] 伞红军,钟诗胜,王知行.新型2-TPR/2-TPS空间4自由度并联机构[J].机械工程学报,2008,44(11):298-303 San H J, Zhong S S, Wang Z X. Novel 2-TPR/2-TPS spacial 4-Dof parallel mechanism[J]. Chinese Journal of Mechanical Engineering, 2008,44(11):298-303 (in Chinese)
    [13] 程刚,顾伟,蒋世磊.基于Grassmann线几何理论的并联髋关节试验机奇异位形研究[J].机械工程学报,2012,48(17):29-37 Cheng G, Gu W, Jiang S L. Singularity analysis of a parallel hip joint simulator based on Grassmann line geometry[J]. Journal of Mechanical Engineering, 2012,48(17):29-37 (in Chinese)
    [14] 许毛跃,张登成,李嘉林.四元数在欧拉方程中的应用研究[J].飞行力学,2002,20(1):67-70 Xu M Y, Zhang D C, Li J L. Study of the application of quaternions to Euler equation[J]. Flight Dynamics, 2002,20(1):67-70 (in Chinese)
    [15] 贾书惠.广义欧拉角及其应用[J].力学与实践,1991,13(4):54-58 Jia S H. The generalized Euler angles and their application[J]. Mechanics in Engineering, 1991,13(4):54-58 (in Chinese)
  • 加载中
计量
  • 文章访问数:  182
  • HTML全文浏览量:  33
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-24
  • 刊出日期:  2016-09-05

目录

    /

    返回文章
    返回