留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一平动两转动3-UPU并联机构奇异性分析

吴金波 韩鹏

吴金波, 韩鹏. 一平动两转动3-UPU并联机构奇异性分析[J]. 机械科学与技术, 2016, 35(9): 1313-1317. doi: 10.13433/j.cnki.1003-8728.2016.0901
引用本文: 吴金波, 韩鹏. 一平动两转动3-UPU并联机构奇异性分析[J]. 机械科学与技术, 2016, 35(9): 1313-1317. doi: 10.13433/j.cnki.1003-8728.2016.0901
Wu Jinbo, Han Peng. Singularity Analysis of a 3-UPU Parallel Manipulator with One Translation and Two Rotations[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(9): 1313-1317. doi: 10.13433/j.cnki.1003-8728.2016.0901
Citation: Wu Jinbo, Han Peng. Singularity Analysis of a 3-UPU Parallel Manipulator with One Translation and Two Rotations[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(9): 1313-1317. doi: 10.13433/j.cnki.1003-8728.2016.0901

一平动两转动3-UPU并联机构奇异性分析

doi: 10.13433/j.cnki.1003-8728.2016.0901
基金项目: 

国家自然科学基金项目(50909046)与中央高校基本科研业务费专项基金项目资助

详细信息
    作者简介:

    吴金波(1974-),副教授,博士,研究方向为并联机器人,舰船机电设备的动态特性分析等,hustwjb@mail.hust.edu.cn

Singularity Analysis of a 3-UPU Parallel Manipulator with One Translation and Two Rotations

  • 摘要: 应用线几何工具和旋量理论分析了一平动两转动3-UPU并联机构的奇异形位。根据动平台的静力学平衡条件,推导出机构的6×6 Jacobian矩阵,该Jacobian矩阵也可看作6个线矢量的集合,基于这些线矢量的线性相关性,可识别出机构的奇异形位。引入线性丛逼近算法(LCAA)定义和分析了机构的结构和约束奇异形位,这两种奇异形位均和机构得到多余的自由度相关,文中统称为并联奇异;LCAA算法可得到用旋量坐标表示的最近线性丛的轴线和节距,当并联机构处于或接近奇异形位运动时,该线性丛的轴线和节距提供了机构自运动的额外信息。给出了3-UPU并联机构奇异性分析的实例。
  • [1] 黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006 Huang Z, Zhao Y S, Zhao T S. Advanced spatial mechanism[M]. Beijing: Higher Education Press, 2006 (in Chinese)
    [2] Merlet J P. Parallel robots[M]. Dordrecht: Springer, 2006
    [3] Tsai L W. Kinematics of a three-dof platform with three extensible limbs[M]//Lenarčič J, Parenti-Castelli V. Recent Advances in Robot Kinematics, Netherlands: Springer, 1996:401-410
    [4] Tsai L W, Joshi S. Kinematics and optimization of a spatial 3-UPU parallel manipulator[J]. Journal of Mechanical Design, 2000,122(4):439-446
    [5] Di Gregorio R, Parenti-Castelli V. Mobility analysis of the 3-UPU parallel mechanism assembled for a pure translational motion[J]. Journal of Mechanical Design, 2002,124(2):259-264
    [6] Di Gregorio R. Kinematics of the 3-UPU wrist[J]. Mechanism and Machine Theory, 2003,38(3):253-263
    [7] Zheng X Z, Deng Z Y, Luo Y G, et al. Static analysis of translational 3-UPU parallel mechanism based on principle of virtual work[M]//Yan X T, Ion W J, Eynard B. Global Design to Gain a Competitive Edge, London: Springer, 2008:681-690
    [8] Zheng X Z, Luo Y G, Deng Z Y, et al. Statics of rotational 3-UPU parallel mechanisms based on principle of virtual work[C]//Proceedings of IEEE International Conference on Robotics and Biomimetics, Sanya: IEEE, 2007:1954-1959
    [9] Lu Y, Shi Y, Hu B. Kinematic analysis of two novel 3UPU I and 3UPU II PKMs[J]. Robotics and Autonomous Systems, 2008,56(4):296-305
    [10] Hu B, Lu Y. Solving stiffness and deformation of a 3-UPU parallel manipulator with one translation and two rotations[J]. Robotica, 2011,29(6):815-822
    [11] Wu J B, Yin Z P, Xiong Y L. Singularity analysis of a novel 4-dof parallel manipulator H4[J]. The International Journal of Advanced Manufacturing Technology, 2006,29(7-8):794-802
    [12] 程刚,顾伟,蒋世磊.基于Grassmann线几何理论的并联髋关节试验机奇异位形研究[J].机械工程学报,2012,48(17):29-37 Cheng G, Gu W, Jiang S L. Singularity analysis of a parallel hip joint simulator based on Grassmann line geometry[J]. Chinese Journal of Mechanical Engineering, 2012,48(17):29-37 (in Chinese)
    [13] Hunt K H. Kinematic geometry of mechanisms[D]. Clayton, Victoria, Australia: Monash University, 1978
    [14] Pottmann H, Peternell M, Ravani B. An introduction to line geometry with applications[J]. Computer-Aided Design, 1999,31(1):3-16
    [15] Joshi S A, Tsai L W. Jacobian analysis of limited-DOF parallel manipulators[C]//ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Quebec, Canada: American Society of Mechanical Engineers, 2002:341-348
    [16] Zlatanov D, Bonev I A, Gosselin C M. Constraint singularities of parallel mechanisms[C]//Proceedings of IEEE International Conference on Robotics and Automation, Washington, DC, USA: IEEE, 2002,1:496-502
    [17] 熊有伦,尹周平,熊蔡华,等.机器人操作[M].武汉:湖北科学技术出版社,2002 Xiong Y Y, Yin Z P, Xiong C H, et al. Robotic manipulation[M]. Wuhan: Hubei Science & Technology Press, 2002 (in Chinese)
    [18] Wolf A, Shoham M. Investigation of parallel manipulators using linear complex approximation[J]. Journal of Mechanical Design, 2003,125(3):564-572
  • 加载中
计量
  • 文章访问数:  172
  • HTML全文浏览量:  24
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-23
  • 刊出日期:  2016-09-05

目录

    /

    返回文章
    返回