留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

状态子空间在往复压缩机自动预警方法的研究与应用

赵雨薇 马波 沈炳生 张进杰

赵雨薇, 马波, 沈炳生, 张进杰. 状态子空间在往复压缩机自动预警方法的研究与应用[J]. 机械科学与技术, 2016, 35(4): 568-572. doi: 10.13433/j.cnki.1003-8728.2016.0413
引用本文: 赵雨薇, 马波, 沈炳生, 张进杰. 状态子空间在往复压缩机自动预警方法的研究与应用[J]. 机械科学与技术, 2016, 35(4): 568-572. doi: 10.13433/j.cnki.1003-8728.2016.0413
Zhao Yuwei, Ma Bo, Shen Bingsheng, Zhang Jinjie. Study on Application of State Subspace for Automatic Alarm of Reciprocating Compressor[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(4): 568-572. doi: 10.13433/j.cnki.1003-8728.2016.0413
Citation: Zhao Yuwei, Ma Bo, Shen Bingsheng, Zhang Jinjie. Study on Application of State Subspace for Automatic Alarm of Reciprocating Compressor[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(4): 568-572. doi: 10.13433/j.cnki.1003-8728.2016.0413

状态子空间在往复压缩机自动预警方法的研究与应用

doi: 10.13433/j.cnki.1003-8728.2016.0413
基金项目: 

国家重点基础研究发展计划("973"计划)项目(2012CB026000)与国家自然科学重点基金项目(51135001)资助

详细信息
    作者简介:

    赵雨薇(1989-),硕士研究生,研究方向为往复机械故障诊断与预警技术,bjzxzyw1015@163.com

    通讯作者:

    马波(联系人),副教授,博士,mabo@mail.buct.edu.cn

Study on Application of State Subspace for Automatic Alarm of Reciprocating Compressor

  • 摘要: 往复压缩机现有报警方式单一,多采用"单特征值报警"与"门限报警"的方式,经常导致设备盲目停车而影响生产,无法综合分析设备当前运行状态是否异常并提前预警。针对该问题,提出一种基于状态子空间的往复压缩机自动预警方法。该方法提取设备运行状态信号的特征参数,构造多维特征矩阵,利用核主元分析(kernel principal component analysis,KPCA)方法对多维特征矩阵进行降维,构建状态子空间,计算正常状态和当前状态子空间之间的差异度,并通过故障案例数据自学习得到差异度指标的报警阈值。经实际故障案例验证,该方法能大幅提前往复压缩机典型故障报警时间点,提高在线状态监测系统的故障预警能力。
  • [1] 余良俭.往复压缩机故障诊断技术现状与发展趋势[J].流体机械,2014,42(1):36-39 Yu L J. Review on fault diagnosis technology for reciprocating compressors[J]. Fluid Machinery, 2014,42(1):36-39 (in Chinese)
    [2] 陈光军,胡昌华,任章.一种基于时频分析的故障状态监测方法[J].机械科学与技术,2004,23(3):303-305 Chen G J, Hu C H, Ren Z. A fault diagnosis method based on time-frequency analysis[J]. Mechanical Science and Technology, 2004,23(3):303-305 (in Chinese)
    [3] 马波,高金吉,江志农.往复压缩机活塞杆断裂早期预警技术的研究[J].机械强度,2008,30(3):445-449 Ma B, Gao J J, Jiang Z N. Research on the piston rod fracture Early warning technique of reciprocating compressor[J]. Journal of Mechanical Strength, 2008,30(3):445-449 (in Chinese)
    [4] Tran V T, AlThobiani F, Ball A. An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks[J]. Expert Systems with Applications, 2014,41(9):4113-4122
    [5] Schultheis S M, Lickteig C A, Parchewsky R. Reciprocating compressor condition monitoring[C]//Proceedings of the Thirty-sixth Turbomachinery Symposium. 2007:107-113
    [6] 刘卫华,郁永章.往复压缩机故障诊断技术研究现状与展望[J].压缩机技术,1999,(3):49-52 Liu W H, Yu Y Z. Present situation of fault diagnosis technology study and prospect of reciprocating compressors[J]. Compressor Technology, 1999,(3):49-52 (in Chinese)
    [7] 何平,张卫民,程红亮.压缩机故障信号的机理分析[J].机械研究与应用,2002,15(2):5-7 He P, Zhang W M, Cheng H L. Mechanism analysis of compressor's failure signal [J]. Mechanical Research & Application, 2002,15(2):5-7 (in Chinese)
    [8] 廖广兰,史铁林,黄弢,等.核主元分析在透平机械状态监测中的应用[J].振动、测试与诊断,2005,25(3):182-185 Liao G L, Shi T L, Huang T, et al. Application of kernel principal component to turbines condition monitoring[J]. Journal of Vibration, Measurement & Diagnosis, 2005,25(3):182-185 (in Chinese)
    [9] Tian X M, Deng X G. A fault detection method using multi-scale kernel principal component analysis[C]//Proceedings of the 27th Chinese Control Conference. Kunming: IEEE, 2008:25-29
    [10] Guo K, San Y, Zhu Y. Nonlinear process monitoring using wavelet kernel principal component analysis[C]//Proceedings of 2012 International Conference on Systems and Informatics. Yantai: IEEE, 2012:432-438
    [11] 孙闯,何正嘉,张周锁,等.基于状态信息的航空发动机运行可靠性评估[J].机械工程学报,2013,49(6):30-37 Sun C, He Z J, Zhang Z S, et al. Operating reliability assessment of aero-engine based on condition information[J]. Journal of Mechanical Engineering, 2013,49(6):30-37 (in Chinese)
    [12] Deng X G, Tian X M, Chen S. Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis[J]. Chemometrics and Intelligent Laboratory Systems, 2013,127: 195-209
    [13] Cherry G A, Qin S J. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis[J]. IEEE Transactions on Semiconductor Manufacturing, 2006,19(2):159-172
    [14] Dunia R, Qin S J. Joint diagnosis of process and sensor faults using principal component analysis[J]. Control Engineering Practice, 1998,6(4):457-469
    [15] 杨帆,胡金海,陈卫,等.主元分析方法在航空发动机故障检测与诊断中的应用[J].机械科学与技术,2008,27(3):330-333 Yang F, Hu J H, Chen W, et al. Application of principal component analysis to fault detection and diagnosis of aeroengines[J]. Mechanical Science and Technology for Aerospace Engineering, 2008,27(3):330-333 (in Chinese)
  • 加载中
计量
  • 文章访问数:  123
  • HTML全文浏览量:  19
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-29
  • 刊出日期:  2016-04-05

目录

    /

    返回文章
    返回