留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滚动轴承零件表面的小波模拟与表征

许迪初 汪久根 王庆九

许迪初, 汪久根, 王庆九. 滚动轴承零件表面的小波模拟与表征[J]. 机械科学与技术, 2016, 35(3): 477-483. doi: 10.13433/j.cnki.1003-8728.2016.0327
引用本文: 许迪初, 汪久根, 王庆九. 滚动轴承零件表面的小波模拟与表征[J]. 机械科学与技术, 2016, 35(3): 477-483. doi: 10.13433/j.cnki.1003-8728.2016.0327
Xu Dichu, Wang Jiugen, Wang Qingjiu. Simulation and Characterization of Surfaces of Rolling Bearing Elements Based on Wavelets[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(3): 477-483. doi: 10.13433/j.cnki.1003-8728.2016.0327
Citation: Xu Dichu, Wang Jiugen, Wang Qingjiu. Simulation and Characterization of Surfaces of Rolling Bearing Elements Based on Wavelets[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(3): 477-483. doi: 10.13433/j.cnki.1003-8728.2016.0327

滚动轴承零件表面的小波模拟与表征

doi: 10.13433/j.cnki.1003-8728.2016.0327
基金项目: 

国家自然科学基金项目(51375436)与国家高技术研究发展计划项目(863计划,2015AA043002)资助

详细信息
    作者简介:

    许迪初(1990-),博士研究生,研究方向为摩擦学设计,xudichu@163.com

    通讯作者:

    汪久根,教授,博士生导师,me_jg@zju.edu.cn

Simulation and Characterization of Surfaces of Rolling Bearing Elements Based on Wavelets

  • 摘要: 建立了模拟粗糙表面的小波模型,该模型可生成各向同性高斯表面、各向异性高斯表面;分析了模拟表面的统计参数和自相关函数;验证了该模型的正确性和有效性。小波模型与Johnson转换系统结合,模拟了给定偏态、峰态的非高斯表面,结果显示目标值和模拟值吻合。另外,将支承面曲线从二维推广到三维,研究表明三维支承面曲线能够更加准确反映表面真实信息;定义的粗糙峰曲线和空穴曲线为未来研究粗糙表面微润滑、微摩擦、微磨损提供基础。
  • [1] Liu J Y, Tallian T E, McCool J I. Dependence of bearing fatigue life on film thickness to surface roughness ratio[J]. ASLE Transactions, 1975,18(2):144-152
    [2] Tallian T E. Spalling life model with relaxed distribution constraints, for rough Hertz line contacts[J]. Journal of Tribology, 1993,115(3):453-459
    [3] 温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002 Wen S Z, Huang P. Principles of tribology[M]. Beijing: Tsinghua University Press, 2002 (in Chinese)
    [4] Whitehouse D J, Archard J F. The properties of random surfaces of significance in their contact[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1970,316(1524):97-121
    [5] De Vor R E, Wu S M. Surface profile characterization by autoregressive-moving average models[J]. Journal of Engineering for Industry, 1972,94(3):825-832
    [6] Watson W, Spedding T A. The time series modelling of non-Gaussian engineering processes[J]. Wear, 1982,83(2):215-231
    [7] Whitehouse D J. The generation of two dimensional random surfaces having a specified function[J]. CIRP Annals-Manufacturing Technology, 1983,32(1):495-498
    [8] Gu X J, Huang Y Y. The modelling and simulation of a rough surface[J]. Wear, 1990,137(2):275-285
    [9] Hong M S, Ehmann K F. Three-dimensional surface characterization by two-dimensional autoregressive models[J]. Journal of Tribology, 1995,117(3):385-393
    [10] Uchidate M, Shimizu T, Iwabuchi A, et al. Generation of reference data of 3D surface texture using the non-casual 2D AR model[J]. Wear, 2004,257(12):1288-1295
    [11] Newland D E. An introduction to random vibration and spectral analysis [M]. 2 edition. New York: Longman, 1984
    [12] Hu Y Z, Tonder K. Simulation of 3-D random surface by 2-D digital filter and Fourier analysis[J]. International Journal of Machine Tools and Manufacture, 1992,32(1-2):82-90
    [13] Wu J J. Simulation of rough surfaces with FFT[J]. Tribology International, 2000,33(1):47-58
    [14] Wu J J. Simulation of non-Gaussian surfaces with FFT[J]. Tribology International, 2004, 37(4): 339-346
    [15] Bakolas V. Numerical generation of arbitrarily oriented non-Gaussian three-dimensional rough surfaces[J]. Wear, 2003,254(5-6):546-554
    [16] Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces[J]. Journal of Tribology, 1990,112(2):205-216
    [17] Majumdar A, Tien C L. Fractal characterization and simulation of rough surfaces[J]. Wear, 1990,136(2):313-327
    [18] Yan W, Komvopoulos K. Contact analysis of elastic-plastic fractal surfaces[J]. Journal of Applied Physics, 1998,84(7):3617-3624
    [19] 杨福生.小波变换的工程分析与应用[M].北京:科学出版社,1999 Yang F S. Engineering analysis and application of wavelet transforms[M]. Beijing: Science Press, 1999 (in Chinese)
    [20] Sayles R S, Thomas T R. Surface topography as a nonstationary random process[J]. Nature, 1978,271(5644):431-434
    [21] 任志英,高诚辉.小波变换在粗糙表面几何形貌表征中的应用[J].中国工程机械学报,2013,11(1):78-82 Ren Z Y, Gao C H. Applications of wavelet transform for rough-surface morphological characterizations[J]. Chinese Journal of Construction Machinery, 2013,11(1):78-82 (in Chinese)
    [22] 邸继征.小波分析原理[M].北京:科学出版社,2010 Di J Z. Analytical principles of wavelets[M]. Beijing: Science Press, 1999 (in Chinese)
    [23] Hill I D, Hill R, Holder R L. Fitting Johnson curves by moments[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1976,25(2):180-189
    [24] Johnson N L. Systems of frequency curves generated by methods of translation[J]. Biometrika, 1949,36(1-2):149-176
    [25] Hill I D. Normal-Johnson and Johnson-normal transforma- tions[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1976,25(2):190-192
    [26] Chilamakuri S K, Bhushan B. Contact analysis of non-Gaussian random surfaces[J]. Journal of Engineering Tribology, 1998,212(1):19-32
  • 加载中
计量
  • 文章访问数:  221
  • HTML全文浏览量:  36
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-16
  • 刊出日期:  2016-03-05

目录

    /

    返回文章
    返回