留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩感知在滚动轴承振动信号降噪中的应用

刘畅 伍星 毛剑琳 柳小勤

刘畅, 伍星, 毛剑琳, 柳小勤. 压缩感知在滚动轴承振动信号降噪中的应用[J]. 机械科学与技术, 2016, 35(2): 192-195. doi: 10.13433/j.cnki.1003-8728.2016.0206
引用本文: 刘畅, 伍星, 毛剑琳, 柳小勤. 压缩感知在滚动轴承振动信号降噪中的应用[J]. 机械科学与技术, 2016, 35(2): 192-195. doi: 10.13433/j.cnki.1003-8728.2016.0206
Liu Chang, Wu Xing, Mao Jianlin, Liu Xiaoqin. Application of Compressed Sensing in Rolling Bearing Signal De-noising[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(2): 192-195. doi: 10.13433/j.cnki.1003-8728.2016.0206
Citation: Liu Chang, Wu Xing, Mao Jianlin, Liu Xiaoqin. Application of Compressed Sensing in Rolling Bearing Signal De-noising[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(2): 192-195. doi: 10.13433/j.cnki.1003-8728.2016.0206

压缩感知在滚动轴承振动信号降噪中的应用

doi: 10.13433/j.cnki.1003-8728.2016.0206
基金项目: 

国家自然科学基金项目(51265018)与云南省教育厅科学研究基金项目(2013Y311)资助

详细信息
    作者简介:

    刘畅(1979-),工程师,博士研究生,研究方向为机械设备状态监测与故障诊断技术、智能诊断、压缩感知,lxl3385@163.com

Application of Compressed Sensing in Rolling Bearing Signal De-noising

  • 摘要: 针对滚动轴承振动信号降噪的问题,研究压缩感知在滚动轴承信号降噪中的应用。分析滚动轴承振动信号的DCT变换系数值分布的特点,提出能够自适应信号类型的重构停止阈值计算方法,使用OMP进行信号重构的同时实现降噪。与传统小波阈值降噪方法进行实验对比分析,结果表明:使用的方法在降噪效果上与小波双曲阈值方法接近,优于小波软阈值方法,且处理的数据量远小于小波方法。
  • [1] 苏文胜.滚动轴承振动信号处理及特征提取方法研究[D].大连:大连理工大学,2010 Su W S. Research on rolling element bearing vibration signal processing and feature extraction method[D]. Dalian:Dalian University of Technology, 2010(in Chinese)
    [2] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006,52(4):1289-1306
    [3] Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,31(2):210-227
    [4] 徐争元,张成,韦穗.稀疏表示人脸识别算法的研究与改进[J].计算机仿真,2013,30(6):405-408,413 Xu Z Y, Zhang C, Wei S. Research and improvement of sparse representation face recognition algorithm[J]. Computer Simulation, 2013,30(6):405-408,413(in Chinese)
    [5] 邹伟.压缩感知在图像处理中的应用研究[D].上海:上海交通大学, 2012 Zou W. Application study of compressed sensing in image processing[D]. Shanghai:Shanghai Jiaotong University, 2012(in Chinese)
    [6] 管超.基于稀疏表示理论的图像超分辨率重构算法研究[D].上海:上海交通大学,2013 Guan C. Research of image super-resolution reconstruion based on sparse representation theory[D]. Shanghai:Shanghai Jiaotong University, 2013(in Chinese)
    [7] 高畅,李海峰,马琳.面向内容的语音信号压缩感知研究[J].信号处理,2012,28(6):851-858 Gao C, Li H F, Ma L. Content-based compressive sensing for speech signal[J]. Signal Processing, 2012,28(6):851-858(in Chinese)
    [8] Candès E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008,346(9-10):589-592
    [9] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1998,20(1):33-61
    [10] Elad M. Sparse and redundant representations:from theory to applications in signal and image processing[M]. New York:Springer, 2010
    [11] Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006,59(8):1207-1223
    [12] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007,53(12):4655-4666
    [13] Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit:recursive function approximation with applications to wavelet decomposition[C]//Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA:IEEE, 1993,1:40-44
    [14] Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995,41(3):613-627
    [15] Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association, 1995,90(432):1200-1224
  • 加载中
计量
  • 文章访问数:  184
  • HTML全文浏览量:  36
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-15
  • 刊出日期:  2016-02-05

目录

    /

    返回文章
    返回