留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面轨迹机构的运动可靠性分析

成诚 张均富

成诚, 张均富. 平面轨迹机构的运动可靠性分析[J]. 机械科学与技术, 2014, 33(11): 1633-1636. doi: 10.13433/j.cnki.1003-8728.2014.1105
引用本文: 成诚, 张均富. 平面轨迹机构的运动可靠性分析[J]. 机械科学与技术, 2014, 33(11): 1633-1636. doi: 10.13433/j.cnki.1003-8728.2014.1105
Cheng Cheng, Zhang Junfu. Analysis of the Kinematic Reliability for Planar Path Mechanisms[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(11): 1633-1636. doi: 10.13433/j.cnki.1003-8728.2014.1105
Citation: Cheng Cheng, Zhang Junfu. Analysis of the Kinematic Reliability for Planar Path Mechanisms[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(11): 1633-1636. doi: 10.13433/j.cnki.1003-8728.2014.1105

平面轨迹机构的运动可靠性分析

doi: 10.13433/j.cnki.1003-8728.2014.1105
基金项目: 

国家自然科学基金项目(51275425)

教育部“春晖计划”项目(z2011081)资助

详细信息
    作者简介:

    成诚(1988- )硕士研究生,研究方向为机构概率设计,noto_cheng@sina.com。

    通讯作者:

    张均富,教授,博士,zhang_junfu@126.com.

Analysis of the Kinematic Reliability for Planar Path Mechanisms

  • 摘要: 单自由度轨迹机构具有单输入多分量输出的特性.传统机构运动可靠性理论对各输出分量误差独立建模以建立机构运动的可靠性分析模型,该分析模型不能反映机构运动的整体失效情况.为此,提出了一种基于圆形区域的误差模型和可靠性分析模型,并采用1阶可靠性算法对可靠性分析模型求解.为提高模型求解精度,提出采用遗传算法并结合序列二次规划的混合优化算法实现最大可能点的求解.数值实例验证了该方法的有效性.
  • [1] Zhang J F, Du X P. Time-dependent reliability analysisfor functaion generator mechanisms[J]Journal of Mechanical Design,2011,133(4)
    [2] 陈建军,陈勇,崔明涛,等基于运动精度可靠性的平面四杆机构优化设计[J]机械科学与技术,2002,21(6);740-743Chen J J, Chen Y, Cui M T. Optimization design for flatfour-bar mechanism based on reliability of kinematictaccuracy[J]Mechanical Science and Technology,2002,21(6); 740-743(in Chinese)
    [3] Liu T S,Wang J D. A reliability approach to evaluatingrobot accuracy performance[J]Mech. Mach. Theory,1994,29(2):83-94
    [4] Shi Z X. Synthesis of mechanical error in spatial linkagesbased on reliability c:onc:ept[J]Mech. Mach. Theory,1997,32(2);255-259
    [5] 师忠秀,王锋机构运动精度可靠性分析方法的研究[J]机械科学与技术,1997,16(1);115-122Shi Z X,Wang F. Research on the approach of mechanism accuracy reliability analysis[J]. MechanicalScience and Technology, 1997,16(1):115-122(in Chinese)
    [6] 拓耀飞不确定弹性机构可靠性分析及其优化设计研究[D]西安:西安电子科技大学,2007Tuo Y F. Research on reliability analysis of elasticmechanism and its uncertainty optimization design[D]Xi'an:Xidian University,2007(in Chinese)
    [7] 张义民,黄贤振,贺向东不完全概率信息牛头刨床机构运动精度可靠性稳健设计[J]机械工程学报,2009,45(4):105-110Zhang Y M,Huang X Z,He X D. Reliability-basedrobust design for kinematic accuracy of the shapermechanism under incomplete probability information}J}Journal of Mechanical Engineering, 2009,45(4):105-110(in Chinese)
    [8] Wang J G, Zhang J F, Du X P. Hybrid dimensionreductaion for mechanism reliability analysis with randomjoint caearanc:es[J]Mechanism and Machine Theory,2011,46(10):1396-141
    [9] 0Zhang Y M, Huang X Z, Zhang X F. System reliability analysisfor kinematic perlornancte of planar mechanisms[J]Chinese Science Bulletin,2009,54(14);2464- 2469
    [10] 黄洪钟机械传动可靠性理论与应用[M]北京:中国科学技术出版社,1995Huang H Z. Mechanical transmission reliability theoryand application[M]Beijing; China Science andTechnology Press,1995(in Chinese)
    [11] 赵竹青,陈建军,崔明涛,等基于概率的凸轮机构运动精度分析[J]机械科学与技术,2002,21(5);754-757Zhao Z Q,Chen J J, Cui M T. Analysis of kinematictaccuracy foram mechanism based on probability[J]Mechanical Seience and Technology,2002,21(5):754-757(in Chinese)
    [12] Huang X Z,Zhang Y M. Probabilistic: approach tosystem reliability of mechanism with correlated failuremodels[J]. Mathematical Problems in Engineering,2012
    [13] Bhatti P K, Rao S S. Reliability analysis of robotmanipulators[J]. Journal of Mechanisms, Transmissions,and Automation in Design,1998,110:175-181
    [14] Rosenblatt M. Remarks on a multivariate transformation } JThe Annals of Mathematical Statistic、,1952, 23(3):470-472
    [15] Zhang J F, Du X P. A second-order reliability methodwith first-order effieiency[J]Journal of Mec:hanic:alDesihn,2010,132(10)"
  • 加载中
计量
  • 文章访问数:  173
  • HTML全文浏览量:  28
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-27

目录

    /

    返回文章
    返回