留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于局部均值分解和奇异值差分谱的滚动轴承故障诊断研究

王志武 孙虎儿 刘维雄

王志武, 孙虎儿, 刘维雄. 基于局部均值分解和奇异值差分谱的滚动轴承故障诊断研究[J]. 机械科学与技术, 2014, 33(9): 1340-1344. doi: 10.13433/j.cnki.1003-8728.2014.0912
引用本文: 王志武, 孙虎儿, 刘维雄. 基于局部均值分解和奇异值差分谱的滚动轴承故障诊断研究[J]. 机械科学与技术, 2014, 33(9): 1340-1344. doi: 10.13433/j.cnki.1003-8728.2014.0912
Wang Zhiwu, Sun Huer, Liu Weixiong. Study on Rolling Bearing Fault Diagnosis Based on LMD and Difference Spectrum Theory of Singular Value[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(9): 1340-1344. doi: 10.13433/j.cnki.1003-8728.2014.0912
Citation: Wang Zhiwu, Sun Huer, Liu Weixiong. Study on Rolling Bearing Fault Diagnosis Based on LMD and Difference Spectrum Theory of Singular Value[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(9): 1340-1344. doi: 10.13433/j.cnki.1003-8728.2014.0912

基于局部均值分解和奇异值差分谱的滚动轴承故障诊断研究

doi: 10.13433/j.cnki.1003-8728.2014.0912
基金项目: 

国家自然科学基金项目(51075292)资助

详细信息
    作者简介:

    王志武(1987-),硕士研究生,研究方向为机械故障诊断与信号处理,wangzhiwuss@163.com;孙虎儿(联系人),副教授,博士,sunhuernu@163.com

    王志武(1987-),硕士研究生,研究方向为机械故障诊断与信号处理,wangzhiwuss@163.com;孙虎儿(联系人),副教授,博士,sunhuernu@163.com

Study on Rolling Bearing Fault Diagnosis Based on LMD and Difference Spectrum Theory of Singular Value

  • 摘要: 为了从复杂的轴承振动信号中提取微弱的故障信息,提出了一种基于局部均值分解(local mean decomposition,LMD)和奇异值差分谱的轴承故障诊断方法。首先通过LMD将非平稳的原始轴承故障信号分解为若干个PF(product function)分量,由于背景噪声的影响,难以从PF分量准确得到故障频率,对PF分量进行Hankel矩阵重构和奇异值分解,相应的得到奇异值差分谱,根据奇异值差分谱理论对某个PF分量进行消噪和重构,然后再求重构后PF分量的包络谱,便能准确地得到故障频率。仿真分析和滚动轴承内圈故障实例很好地验证了提出的改进方法的有效性。
  • [1] Rubini R,Meneghetti U. Application of the envelopeand wavelet transform analyses for the diagnosis ofincipient faults in ball bearing [J]. MechanicalSystems and Signal Processing,2001,15(2):287-302
    [2] Yu D J,Cheng J S,Yang Y. Fault diagnosis approachfor roller bearing based on empirical mode decompositionmethod and hilbert transform[J]. Chinese Journal ofMechanical Engineering,2005,18 (2): 267-270 (in Chinese)
    [3] Huang N E,Wu M L C,Long S R. A confidence limitfor the empirical mode decomposition and Hilbertspectral analysis[J]. Proceedings Royal of Society A,2003,459:2317-2345 (in Chinese)
    [4] Smith J S. The local mean decomposition and its applicationto EEG perception data[J]. Journal of the Royal SocietyInterface,2005,2(5):443-454
    [5] 程军圣,张亢,杨宇,等. 局部均值分解与经验模式分解的对比研究[J]. 振动与冲击,2009,28(5):13-16Cheng J S,Zhang K,Yang Y,et al. Comparisonbetween the methods of local mean decomposition andempirical mode decomposition[J]. Journal of Vibrationand Shock,2009,28(5):13-16 (in Chinese)
    [6] Liu W Y,Zhang W H,Han J G. A new wind turbinefault diagnosis method based on the local meandecomposition [J]. Renewable Energy,2012,48:411-415 (in Chinese)
    [7] 陈保家,何正嘉,陈雪峰,等. 机车故障诊断的局域均值分解解调方法[J]. 西安交通大学学报,2010,44(5):40-44Chen B J,He Z J,Chen X F,et al. Locomotive faultdiagnosis based on local mean decompositiondemodulating approach [J]. Journal of Xi'an JiaotongUniversity,2010,44(5):40-44 (in Chinese)
    [8] 杨文献,姜节胜. 机械信号奇异熵研究[J]. 机械工程学报,2000,36(12):9-13Yang W X,Jiang J S. Study on the singular entropy ofmechanical signal [J]. Chinese Journal of MechanicalEngineering,2000,36(12):9-13 (in Chinese)
    [9] Zhao X Z,Ye B Y. Selection of effective singular valuesusing difference spectrum and its application to faultdiagnosis of headstock [J]. Mechanical Systems andSignal Processing,2011,25(5):1617-1631
    [10] 张超,陈建军,徐亚兰. 基于 EMD 分解和奇异值差分谱理论的轴承故障诊断方法[J]. 振动工程学报,2011,24(5):539-545Zhang C,Chen J J,Xu Y L. A bearing fault diagnosismethod based on EMD and difference spectrum theory ofsingular value[J]. Journal of Vibration Engineering,2011,24(5):539-545 (in Chinese)
    [11] 赵学智,叶邦彦,陈统坚. 基于小波-奇异值分解差分谱的弱故障特征提取方法[J]. 机械工程学报,2012,48(7):37-48Zhao X Z,Ye B Y,Chen T J. Extraction method of faintfault feature based on wavelet-SVD difference spectrum[J]. Journal of Mechanical Engineering,2012,48(7):37-48 (in Chinese)
  • 加载中
计量
  • 文章访问数:  136
  • HTML全文浏览量:  22
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-25

目录

    /

    返回文章
    返回