留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑相关性的证据理论结构可靠性分析方法

王彬 姜潮

王彬, 姜潮. 考虑相关性的证据理论结构可靠性分析方法[J]. 机械科学与技术, 2014, 33(9): 1324-1328. doi: 10.13433/j.cnki.1003-8728.2014.0909
引用本文: 王彬, 姜潮. 考虑相关性的证据理论结构可靠性分析方法[J]. 机械科学与技术, 2014, 33(9): 1324-1328. doi: 10.13433/j.cnki.1003-8728.2014.0909
Wang Bin, Jiang Chao. The Structural Reliability Analysis Method of Evidence-theory Considering the Dependence[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(9): 1324-1328. doi: 10.13433/j.cnki.1003-8728.2014.0909
Citation: Wang Bin, Jiang Chao. The Structural Reliability Analysis Method of Evidence-theory Considering the Dependence[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(9): 1324-1328. doi: 10.13433/j.cnki.1003-8728.2014.0909

考虑相关性的证据理论结构可靠性分析方法

doi: 10.13433/j.cnki.1003-8728.2014.0909
基金项目: 

国家自然科学基金项目(11172096)

教育部新世纪优秀人才支持计划项目(NCET-11-0124)

湖南省自然科学创新研究群体基金项目(12JJ7001)资助

详细信息
    作者简介:

    王彬(1987-),硕士研究生,研究方向为结构可靠性分析,wangbin870322@126.com;姜潮(联系人),教授,博士生导师,jiangc@hnu.edu.cn

    王彬(1987-),硕士研究生,研究方向为结构可靠性分析,wangbin870322@126.com;姜潮(联系人),教授,博士生导师,jiangc@hnu.edu.cn

The Structural Reliability Analysis Method of Evidence-theory Considering the Dependence

  • 摘要: 构建了一种考虑相关性的证据理论高效求解模型,讨论了该模型在结构可靠性中的应用。为了提高证据理论进行结构可靠性分析的准确性和效率,引入了非概率凸模型中的椭球模型和一种高效分析方法。通过把非概率凸模型中的椭球模型应用到证据理论中,考虑每对变量的相关系数,把变量的边缘基本可信度分配(BPA)转化为联合基本可信度分配。提出了一种高效计算方法,通过寻找最可能失效点(MPP)将不确定域划分可靠域和待确定域,结构可靠性的求解只需要在待确定域中进行。该方法减少了需要计算的焦元数,提高了证据理论模型求解结构可靠性的效率。
  • [1] Shafer G. A mathematical theory of evidence[M].Princeton: Princeton University Press,1976
    [2] Klir G J,Folger T A. Fuzzy sets,uncertainty,andinformation[M]. Prentice-Hall: New Jersey,1988
    [3] Yager R R,Kacprzyk J,Fedrizzi M. Advances in theDempster-shafer theory of evidence[M]. John Wiley &Sons,New York,1994
    [4] Oberkampf W L,Helton J C,Sentz K. Mathematicalrepresentation of uncertainty[C]//American Instituteof Aeronautics and Astronautics Non-DeterministicApproaches Forum,Seattle,WA,Paper,2001
    [5] Sentz K,Ferson S. Combination of evidence in dempster-shafer theory[M]. Albuquerque,New Mexico: SandiaNational Laboratories,2002
    [6] Tonon F,Bernardini A,Mammino A. Determinationof parameters range in rock engineering by means ofrandom set theory[J]. Reliab. Eng. Syst. Safe.,2000,(70):241-261
    [7] Oberkampf W L,Helton J C. Investigation of evidencetheory for engineering applications [C]//4th Non-deterministic Approaches Forum,Denver,Colorado,2002
    [8] Agarwal H,Renaud J E,Preston E L,et al. Uncertaintyquantification using evidence theory in multidisciplinarydesign optimization[J]. Reliab. Eng. Syst. Safe.,2004,(85):281-294
    [9] Bae H R,Grandhi R V,Canfield R A. Epistemicuncertainty quantification techniques includingevidence theory for large-scale structures [J].Computers & Structures,2004,82 (13 ):1101-1112
    [10] Jiang C,Wang B. An evidence-theory modelconsidering dependence among parameters and itsapplication in structural reliability analysis [J].Engineer Structure,2013,57
    [11] Mourelatos Z,Zhou J. A design optimization methodusing evidence theory[J]. ASME J. Mech. Des.,2006,128: 901-908
    [12] Jiang C,Han X,Lu G Y,et al. Correlation analysis ofnon-probabilistic convex model and correspondingstructural reliability technique[J]. Computer Methodsin Applied Mechanics and Engineering,2011,200(33):2528-2546
    [13] Elishakoff I. An idea of the uncertainty triangle[J].Shock and Vibration Digest,1990,22(10)
    [14] 邱志平. 非概率集合理论凸方法及其应用[M]. 北京:国防工业出版社,2005Qiu Z P. Convex method based on non-probabilistic set-theory and its application [M]. Beijing: NationalDefense Industry Press,Beijing,2005 (in Chinese)
    [15] 曹鸿钧,段宝岩. 基于凸集合模型的非概率可靠性研究[J]. 计算力学学报,2005,22(5):546-549Cao H J,Duan B Y. An approach on the non-probabilistic reliability of structures based on uncertaintyconvex models[J]. Chin. J. Comput. Mech.,2005,22(5):546-549 (in Chinese)
  • 加载中
计量
  • 文章访问数:  116
  • HTML全文浏览量:  21
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-08

目录

    /

    返回文章
    返回