留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于反应-扩散模型的连续体结构拓扑优化仿生方法

开依沙尔·热合曼 买买提明·艾尼

开依沙尔·热合曼, 买买提明·艾尼. 基于反应-扩散模型的连续体结构拓扑优化仿生方法[J]. 机械科学与技术, 2014, 33(9): 1314-1318. doi: 10.13433/j.cnki.1003-8728.2014.0907
引用本文: 开依沙尔·热合曼, 买买提明·艾尼. 基于反应-扩散模型的连续体结构拓扑优化仿生方法[J]. 机械科学与技术, 2014, 33(9): 1314-1318. doi: 10.13433/j.cnki.1003-8728.2014.0907
Kaysar稲ahman, Mamtimin稧eni. A Bionic Approach for Topology Optimization of Continuum Structures Based on Reaction-diffusion Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(9): 1314-1318. doi: 10.13433/j.cnki.1003-8728.2014.0907
Citation: Kaysar稲ahman, Mamtimin稧eni. A Bionic Approach for Topology Optimization of Continuum Structures Based on Reaction-diffusion Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(9): 1314-1318. doi: 10.13433/j.cnki.1003-8728.2014.0907

基于反应-扩散模型的连续体结构拓扑优化仿生方法

doi: 10.13433/j.cnki.1003-8728.2014.0907
基金项目: 

国家自然科学基金面向项目(50775193)

新疆大学创新训练计划项目(XJU-SRT-14046)资助

详细信息
    作者简介:

    开依沙尔·热合曼(1978-),讲师,博士研究生,研究方向为机械优化设计和工程数值计算方法,kaysar2001@sina.com;买买提明.艾尼(联系人),教授,博士生导师,mgheni@263.com

A Bionic Approach for Topology Optimization of Continuum Structures Based on Reaction-diffusion Model

  • 摘要: 通过反应-扩散模型和有限元方法的耦合建立了骨重建数学模型。通过像素单元的添加和删除准则,把骨重建过程转化为材料形成和材料被吸收过程,对连续体结构提出仿生拓扑优化计算方法。再次对连续体结构拓扑优化中广泛被应用的Michell型结构进行拓扑优化计算,以及将其结果与其它几种拓扑优化方法进行比较,验证了文中方法的有效性。最终在两种不同边界条件下对长悬臂梁模型进行拓扑优化计算,获得规则性和对称性的拓扑形式。
  • [1] Bendse M P,Kikuchi N. Generating optimaltopologies in structural design using a homogenizationmethod [J]. Computer Methods in AppliedMechanics and Engineering,1988,71(2):197-224
    [2] Bendse M P,Sigmund O. Topology optimization: theory,methods,and applications[M]. New York: Springer,2003
    [3] Huang X,Xie Y M. Evolutionary topology optimizationof continuum structures: methods and applications[M]. United Kingdom: John Wiley & Sons Ltd,2010
    [4] Wang X,Wang M Y,Guo D. Structural shape andtopology optimization in a level set based framework ofregion representation [J]. Structural and MultidisciplinaryOptimization,2004,27(2):1-19
    [5] Eschenauer H A,Olhoff N. Topology optimization ofcontinuum structures: a review[J]. Applied MechanicsReviews,2001,54(4): 331-390
    [6] Mow Van C,Rik H. Basic orthopaedic biomechanicsand mechano-biology [M]. 3rd Edition. Philadelphia:Lippincott Williams & Wilkins,2005
    [7] Wolff J. The law of bone remodeling[M]. Berlin:Springer-verlag,1986
    [8] Huiskes R,Ruimerman R,Van Lenthe G H,et al.Effects of mechanical forces on maintenance andadaptation of form in trabecular bone[J]. Nature,2000,405(6787):704-706
    [9] Tezuka K,Wada Y,Takahashi A,et al. Computer-simulated bone architecture in a simple bone-remodeling model based on a reaction-diffusionsystem [J ]. Journal of Bone and MineralMetabolism,2005,23(1):1-7
    [10] Bagge M. A model of bone adaptation as an optimizationprocess[J]. Journal of Biomechanics,2000,33(11):1349-1357
    [11] Xinghua Z,He G,Bingzhao G. The application oftopology optimization on the quantitative description ofthe external shape of bone structure [J]. Journal ofBiomechanics,2005,38(8):1612-1620
    [12] Mattheck C. Trees-the mechanical design[M]. Berlin:Springer-Verlag,1991
    [13] Tovar A. Bone remodeling as a hybrid cellularautomaton optimization process[D]. Notre Dame:University of Notre Dame,2004
    [14] 买买提明. 艾尼. 用有限元法耦合反应扩散模型的骨重建和仿生拓扑优化方法研究[J]. 新疆大学学报,2009,26(4):402-407Mamtimin. Geni. Study on bone remodeling and bionictopology optimization method by using reaction-diffusionmodel coupled with FEM [J]. Journal of XinjiangUniversity,2009,26(4):402-407 (in Chinese)
    [15] 买买提明艾尼,贾丽华,开依沙尔热合曼,等. 受多向载荷骨组织的仿生拓扑优化[C]//中国力学学会学术大会 2009 论文集,郑州:2009:824-Geni,Jia L H,Rahman K,et al. Bionictopology optimization for bone tissue under multi loadstress condition[C]//CCTAM2009,Zhengzhou: 2009:824-826 (in Chinese)
    [16] Kaysar. Rahman,Mamtimin. Geni,et al. A new bionictopology optimization method based model of boneadaptation [J]. Applied Mechanics and Materials,2013,433:2254-2259
    [17] Turing A M. The chemical basis of morphogenesis[J].Bulletin of Mathematical Biology,1990,52(1):153-197
    [18] 陆征一,王稳地. 生物数学前沿[M]. 北京:科学出版社,Z Y,Wang W D. Frontiers of mathematicalbiology [M]. Beijing: Science Press,2008 (in Chinese)
    [19] Matsuura Y,Oharu S,Tebbs D. On a class reaction-diffusion systems describing bone remodeling phenomena[J]. Nihonkai Mathematical Journal,2002,13 (2):17-32
    [20] Garzón-Alvarado D A,García-Aznar J M,Doblaré M. Areaction-diffusion model for long bones growth [J].Biomechanics and Modeling in Mechano Biology,2009,8(5):381-395
    [21] Kaveh A,Hassani B,Shojaee S,et al. Structuraltopology optimization using ant colony methodology[J].Engineering Structures,2008,30(9):2559-2565
    [22] Yamada T,Izui K,Nishiwaki S,et al. A topologyoptimization method based on the level set methodincorporating fictitious interface energy [J]. ComputerMethods in Applied Mechanics and Engineering,2010,199(45):2876-2891
    [23] 买买提明. 艾尼,王旭飞,阿布都克力木,等. 基于波形法的有限元分析辅助软件系统[P]. 2007-0019Mamtimin Geni,Wang X F,Abudukerm,et al. Finiteelement analysis support tools with wave mesh generator[P]. 2007-0019 (in Chinese)
  • 加载中
计量
  • 文章访问数:  122
  • HTML全文浏览量:  22
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-21

目录

    /

    返回文章
    返回