留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于NGA的C-Bézier曲线降多阶逼近

胡钢 吉晓民 秦新强

胡钢, 吉晓民, 秦新强. 基于NGA的C-Bézier曲线降多阶逼近[J]. 机械科学与技术, 2014, 33(6): 875-880. doi: 10.13433/j.cnki.1003-8728.2014.0619
引用本文: 胡钢, 吉晓民, 秦新强. 基于NGA的C-Bézier曲线降多阶逼近[J]. 机械科学与技术, 2014, 33(6): 875-880. doi: 10.13433/j.cnki.1003-8728.2014.0619
Hu Gang, Ji Xiaomin, Qin Xinqiang. Multidegree reduction of C-B閦ier Curve Based on Niche Genetic Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(6): 875-880. doi: 10.13433/j.cnki.1003-8728.2014.0619
Citation: Hu Gang, Ji Xiaomin, Qin Xinqiang. Multidegree reduction of C-B閦ier Curve Based on Niche Genetic Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(6): 875-880. doi: 10.13433/j.cnki.1003-8728.2014.0619

基于NGA的C-Bézier曲线降多阶逼近

doi: 10.13433/j.cnki.1003-8728.2014.0619
基金项目: 

国家自然科学基金项目(51305344)

国家自然科学基金重大研究计划培育项目(91120014)

陕西省教育厅基金项目(2013JK1029)资助

详细信息
    作者简介:

    胡钢(1979-),副教授,博士研究生,研究方向为计算机辅助设计与图形学和产品造型设计理论,huhui-xauot@163.com

Multidegree reduction of C-B閦ier Curve Based on Niche Genetic Algorithm

  • 摘要: 针对C-Bézier曲线的降阶逼近问题,提出了一种将1条n次C-Bézier曲线降阶为1条m(mn)次C-Bézier曲线的方法。该方法从最优化思想出发,把C-Bézier曲线的降阶问题转化为求解函数的优化问题,并结合智能计算中的小生境遗传算法,实现了C-Bézier曲线在端点无约束和G0约束条件下的一次性近似降多阶逼近。同时给出了一些具体的C-Bézier曲线降阶实例与降阶误差,并估计了该曲线的降阶误差界。结果表明:该方法不仅提高了C-Bézier曲线降阶算法的精度,且获得了较好的降阶逼近效果。
  • [1] Farin G.Curves and surfaces for cagd: a pratical guid.5 edition[M]. San Diego: Academic Press,2002
    [2] Zhang J W.C-Curves: an extension of cubic curves [J]. Computer Aided Geometric Design,1996,13(3):199-217
    [3] Zhang J W.Two different forms of C-B-splines[J].Computer Aided Geometric Design,1997,14(1): 31-41
    [4] Zhang J W.C-Bézier curves and surfaces [J].Graphical Models and Image Processing,1999,61(1): 2-15
    [5] Chen Q Y,Wang G Z.A class of Bézier-like curves[J]. Computer Aided Geometric Design,2003,20(1):29-39
    [6] 樊建华,张纪文,邬义杰.C-Bézier 曲线的形状修改[J].软件学报,2002,13(11): 2194-2199Fan J H,Zhang J W,Wu Y J.Shape modification of C-Bézier curves [J]. Journal of Software,2002,13(11): 2194-2199 (in Chinese)
    [7] 樊建华,邬义杰,林兴.C-Bézier 曲线分割算法及 G1拼接条件[J]. 计算机辅助设计与图形学报,2002,14(5): 421-424Fan J H,Wu Y J,Lin X.Subdivision algorithm and G1 condition for C-Bézier curves [J]. Journal of Computer Aided Design & Computer Graphics,2002,14 (5): 421-424 (in Chinese)
    [8] 杨雅迪,秦新强,胡钢,等.C-Bézier 曲线的光顺逼近算法[J]. 计算机应用,2008,28(12): 3132-3134Yang Y D,Qin X Q,Hu G,et al.Fairing and approximation algorithm of C-Bézier curves[J]. Journal of Computer Applications,2008,28(12): 3132-3134 (in Chinese)
    [9] 叶正麟,吴荣军.平面 C-Bézier 曲线的奇拐点分析[J].计算数学,2005,27(1): 63-70Ye Z L,Wu r J.Analysis of inflection and singular points on planar C-Bézier curves [J]. Mathematica Numerica Sinica,2005,27(1): 63-70 (in Chinese)
    [10] 樊建华,罗国明,王卫民.C-Bézier 曲面分割 、拼接及其应用[J]. 工程图学学报,2002,23(3): 133-138Fan J H,Luo G M,Wang W M.Subdivision algorithm and G1 condition and application for C-Bézier surfaces[J].Journal of Engineering Graphics,2002,23 (3): 133-138(in Chinese)
    [11] Cai H J,Wang G J.Constrained approximation of rational Bézier curves based on a matrix expression of its endpoints continuity condition [J]. Computer Aided Design,2010,42(6): 495-504
    [12] Lu L Z,Wang G Z.Application of chebyshev II-Bernstein basis transformations to degree reduction of Bézier curves [J]. Journal of Computational and Applied Mathematics,2008,221 (1): 52-65
    [13] 康宝生,石茂,张景峤.有理 Bézier 曲线的降阶[J].软件学报,2004,15 (10): 1522-1527Kang B S,Shi M,Zhang J Q.Degree reduction of rational Bézier curves[J]. Journal of Software,2004,15(10): 1522-1527 (in Chinese)
    [14] 梁秀霞,张彩明,徐琳,等.L∞ 范数下使用基本曲线和修正曲线的带约束 Bézier 曲线降阶[J]. 计算机辅助设计与图形学学报,2006,18(3): 401-405Liang X X,Zhang C M,Xu L,et al.Constrained degree reduction of Bézier curve in L∞ norm using basic curve and correction curve[J]. Journal of Computer Aided Design & Computer Graphics,2006,18 (3): 401-405 (in Chinese)
    [15] 王文涛.C-Bézier 曲线降阶逼近[J]. 浙江大学学报,2009,36(4): 396-400 Wang W T.Degree reduction of C-Bézier curves[J].Journal of Zhejiang University,2009,36 (4): 396-400(in Chinese)
    [16] 管贤平,戴先中,李俊.基于变邻域小生境遗传算法的 AGV 路径网络设计方法[J]. 中国机械工程,2009,20(21): 2581-2586Guan X P,Dai X Z,Li J.Variable neighborhood niche genetic algorithm based AGV flow path design method[J].China Mechanical Engineering,2009,20 (21): 2581-2586 (in Chinese)
    [17] 陆青,梁昌勇,杨善林,等.面向多模态函数优化的自适应小生境遗传算法[J]. 模 式 识 别 与 人 工 智 能,2009,22(1): 91-100Lu Q,Liang C Y,Yang S L,et al.An adaptive niche genetic algorithm for multimodal function optimization[J].Pattern recognition and Artificial Intelligence,2009,22(1): 91-100 (in Chinese)
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  9
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-16
  • 刊出日期:  2015-06-10

目录

    /

    返回文章
    返回