留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

特征矢量优化的滚动轴承故障诊断

张锐戈 谭永红

张锐戈, 谭永红. 特征矢量优化的滚动轴承故障诊断[J]. 机械科学与技术, 2014, 33(6): 864-869. doi: 10.13433/j.cnki.1003-8728.2014.0617
引用本文: 张锐戈, 谭永红. 特征矢量优化的滚动轴承故障诊断[J]. 机械科学与技术, 2014, 33(6): 864-869. doi: 10.13433/j.cnki.1003-8728.2014.0617
Zhang ruige, Tan Yonghong. Application of the Optimized Feature Vectors for Fault Diagnosis of rolling Element Bearings[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(6): 864-869. doi: 10.13433/j.cnki.1003-8728.2014.0617
Citation: Zhang ruige, Tan Yonghong. Application of the Optimized Feature Vectors for Fault Diagnosis of rolling Element Bearings[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(6): 864-869. doi: 10.13433/j.cnki.1003-8728.2014.0617

特征矢量优化的滚动轴承故障诊断

doi: 10.13433/j.cnki.1003-8728.2014.0617
基金项目: 

国家自然科学基金项目(61171088)

福建省教育厅A类科技计划项目(JA12303)

福建省科技厅重点科技计划项目(2013N0032)资助

详细信息
    作者简介:

    张锐戈(1977-),副教授,博士研究生,研究方向为轴承故障诊断和智能信号处理,ruig_zhang@126.com

Application of the Optimized Feature Vectors for Fault Diagnosis of rolling Element Bearings

  • 摘要: 为提取小波包频带中的有效故障信息,基于Fisher线性测度提出一种新的特征矢量优化方法。轴承振动信号经小波包分解后,各子频带数据片段的能量值作为参数构建特征矢量。使用差异性和相似性优化相结合方法,分别选出不同轴承状态下Fisher距离较大的小波包频带,以及同种轴承状态下Fisher距离最小的频带,提取出易于区分不同轴承状态的故障信息。故障辨识使用连续型隐马尔可夫模型,在3种故障程度下实现了轴承正常状态、滚动体故障、内圈和外圈故障的有效判别,辨识精度大于94%。比较实验表明文中方法的辨识精度优于文献方法。
  • [1] 何庆飞,姚春江,陈桂明,等.基于改进小波包奇异值法的齿轮泵振动信号去噪[J]. 机 械 科 学 与 技 术,2012,31 (9): 1445-1448He Q F,Yao C J,Chen G M,et al.De-noising of gear pump vibration signal based on improved wavelet packet singular value decompositon[J]. Mechanical Science and Technology for Aerospace Engineering,2012,31(9): 1445-1448 (in Chinese)
    [2] 李辉,郑海起,唐力伟.基于双树复小波包峭度图的轴承故障诊断研究[J]. 振动与冲击,2012,31 (10):13-18Li H,Zheng H Q,Tang L W.Bearing fault diagnosis based on kurtogram of duan-tree complex wavelet packet transform[J]. Vibration and Shock,2012,31 (10): 13-18 (in Chinese)
    [3] Pan Y,Chen J,Li X.Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means[J]. Mechanical Systems and Signal Processing,2010,24(2): 559-566
    [4] 赵志宏,杨绍普.基于小波包变换与样本熵的滚动轴承故障诊断[J]. 振动·测试与诊断,2012,32 (4):640-644Zhao Z H,Yang S P.roller bearing fault diagnosis based on wavelet packet transform and sample entropy[J]. Journal of Vibration,Measurement & Diagnosis,2012,32(4): 640-644 (in Chinese)
    [5] 李宏坤,赵长生,周帅,等.基于小波包-坐标变换的滚动轴承故障特征增强方法[J]. 机械工程学报,2011,47(19): 74-80Li H K,Zhao C S,Zhou S,et al.Fault feature enhancement method for rolling bearing based on wavelet packet-coordinate transformation [J]. Journal of Mechanical Engineering,2011,47 (19): 74-80 (in Chinese)
    [6] 苏文胜,王奉涛,朱泓,等.基于小波包样本熵的滚动轴承故障特征提取[J]. 振动.测试与诊断,2011,32(2): 162-166Su W S,Wang F T,Zhu H,et al.Feature extraction of rolling element bearing fault using wavelet packet sample entropy [J]. Journal of Vibration,Measurement &Diagnosis,2011,31 (2): 162-166 (in Chinese)
    [7] 肖文斌,陈进,周宇,等.小波包变换和隐马尔可夫模型在轴承性能退化评估中的应用[J]. 振动与冲击,2011,30(8): 32-35Xiao W B,Chen J,Zhou Y,et al.Wavelet packet transform and hidden Markov model based bearing performance degradation assessment[J]. Vibration and Shock,2011,30(8): 32-35 (in Chinese)
    [8] Yan r,Gao r X.An efficient approach to machine health diagnosis based on harmonic wavelet packet transform [J]. robotics and Computer-Integrated Manufacturing,2005,21 (4-5): 291-301
    [9] Huang Y,Liu C,Zha X F,et al.A lean model for performance assessment of machinery using second generation wavelet packet transform and Fisher criterion[J].Expert Systems with Applications,2010,37 (5):3815-3822
    [10] Altmann J,Mathew J.Multiple band-pass autoregressive demonulation for rolling-element bearing fault diagnosis[J].Mechanical Systems and Signal Processing,2001,15(5): 963-977
    [11] 徐增丙,轩建平,史铁林,等.基于小波灰度矩向量与连续马尔可夫模型的轴承故障诊断[J]. 中国机械工程,2008,19(15): 1858-1862 Xu Z B,Xuan J P,Shi T L,et al.Fault diagnosis of bearings based on wavelet gray moment vector and CHMM[J]. China Mechanical Engineering,2008,19(15): 1858-1862 (in Chinese)
    [12] 曾庆虎,刘冠军,邱静.基于小波相关特征尺度熵的预测特征信息提取方法 研 究[J]. 中国机械工程,2008,19(10): 1193-1196Zeng Q H,Liu G J,Qiu J.research on approach of prognostics feature informantion extraction based on wavelet correlation feature scale entropy [J]. China Mechanical Engineering,2008,19 (10): 1193-1196 (in Chinese)
    [13] 胡海峰,安茂春,秦国军,等.基于隐半 Markov 模型的故障诊断和故障预测方法研究[J]. 兵工学报,2009,30(1): 69-75Hu H F,An M C,Qin G J,et al.Study on fault diangosis and prognosis methods based on hidden semi Markov model[J]. Acta Armamentarii,2009,30 (1):69-75 (in Chinese)
    [14] 陶新民,徐晶,杜宝祥,等.基于小波域隐马尔可夫模型故障诊断方法[J]. 振动与冲击,2009,28(4): 33-37Tao X M,Xu J,Du B X,et al.Bearing fault diagnosis using wavelet-domain hidden Markov model [J].Vibration and Shock,2009,28(4): 33-37 (in Chinese)
    [15] 张锐戈,谭永红.基于最优 Morlet 小波和隐马尔可夫模型的 轴 承 故 障 诊 断[J]. 振 动 与 冲 击,2012,31(12): 5-8 Zhang r G,Tan Y H.Fault diagnosis of rolling element bearings based on optimal Morlet wavelet and hidden Markov model[J]. Vibration and Shock,2012,31 (12): 5-8 (in Chinese)
    [16] rabiner L r.A tutorial on hidden Markov models and selected applications in speech recognition [J].readings in Speech recognition,1990,53(3): 267-296
  • 加载中
计量
  • 文章访问数:  89
  • HTML全文浏览量:  17
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-13
  • 刊出日期:  2015-06-10

目录

    /

    返回文章
    返回