Study in the Mixed Nonlinear Hardening(M-NH) Model for Multiaxial
-
摘要: 基于Lemaitre and Chaboche非线性随动强化和等向强化理论,提出了一种有效的背应力修正方法,采用Mises屈服准则,建立了复杂加载模式下非线性混合强化材料模型(M-NH)的弹塑性应力应变本构关系,采用高效的Backward Euler切向预测径向返回算法给出应力应变增量的计算,引入最小二乘法根据单轴拉伸实验数据点获得材料的硬化模型参数。为了计算背应力及弹塑性刚度矩阵开发了Fortran程序,编制了M-NH模型的实现代码。针对采用本模型获得的单轴拉伸应力应变曲线,分析了材料相关硬化参数对曲线变化趋势的影响。本模型及Chaboche1991、Basu&Voyiadjis强化模型分别与Chaboche的实验数据对比表明,基于M-NH获得的计算数据与实验结果更为接近。Abstract: Based on the nonlinear kinematic hardening model and isotropic hardening model proposed by Lemaitre and Chaboche,a new term is added in the plastic strain dependent terms.The constitutive equations of the mixed nonlinear hardening(M-NH) model are derived at the complicated loading using Mises' yield function.The efficient implicit backward Euler scheme with radial return is used to obtain strain and stress increments.The least-square error approach is adopted to get material parameters using a finite set of points in the uniaxial stress-strain curve.M-NH model is fulfilled with Fortran codes in order to get backstress and elasto-plastic stiffness matrix.The behavior of the present model constants is analyzed against different conditions.Those individual importance and contribution to stress-strain curve is highlighted.The comparisons between the present results and that of experiment by Chaboche show that it is in better agreement with those results of Chaboche 1991 and Basu Voyiadjis.
-
Key words:
- kinematic hardening /
- constitutive equation /
- radial return algorithm
-
[1] Prager W.A new method to analyzing stresses and strains inwork-hardening plastic solids[J].ASME Journal of AppliedMechanics,1956,78 [2] Zeigler H.A modification of Prager's hardening rule[J].Quar-terly of Applied Mathematics,1959,17:55~65 [3] Mroz Z.On the description of anisotropic work hardening[J].Journal of Mechanical Physics and Solids,1967,15:163~175 [4] Dafalias Y F,Popov E P.Plastic internal variables formulism ofcyclic plasticity[J].Journal of Applied Mechanics,1976,43 [5] Armstrong P J,Frederick C O.A mathematical representation ofthe multiaxial Bauschinger effect[J].Materials at High Tem-peratures,2007,24(1) [6] Chaboche J L.Constitutive equations for cyclic plasticity and cy-clic viscoplasticity[J].International Journal of Plasticity,1989,5:247~302 [7] Lemaitre J,Chaboche J L.Mechanics of Solid Materials[D].Cambridge University Press,1990 [8] Wang H,Barkley M E.Strain space formulation of the Armstrong-Frederick family of plasticity models[J].ASME Journal of En-gineering Materials and Technology,1998,12(3):230~235 [9] Geng L,Wagoner R H.Springback Analysis with a ModifiedNonlinear Hardening Model[R].SAE2000,01041-01-0768 [10] Phillips A,Tang J L,Ricciuti M.Some new observations onyield surfaces[J].Acta Mechanica,1974,20:23~39 [11] Voyiadjis G Z,et al.A plasticity model for multiaxial cyclicloading and ratchetting[J].Acta Mechanica,1998,126 [12] Chaboche J L.On some modifications of kinematic hardening toimprove the description of ratcheting effects[J].InternationalJournal Plasticity,1991,7:661~678 -

计量
- 文章访问数: 125
- HTML全文浏览量: 13
- PDF下载量: 4
- 被引次数: 0