A Method for Predicting Faults of Dynamically Tuned Gyroscope Using SOFM Neural Network and Hidden Markov Model
-
摘要: 针对动调陀螺仪性能参数的退化特点,提出了一种自组织特征映射(SOFM)神经网络和隐马尔可夫模型(HMM)相结合的动调陀螺仪故障预测方法。采集动调陀螺仪的振动、温度、随机漂移、电机功率、电源电压和频率等信号作为表征陀螺退化状态的特征信息,利用SOFM神经网络实现多源传感器信息融合;利用HMM方法将不易检测到的早期故障信号转变为容易观测到的信息,实现动调陀螺仪的故障预测。实验结果表明:采用SOFM方法对传感信号的信息融合,能够简单、有效地提取陀螺退化状态的特征信息。运用HMM进行训练和测试,说明了该方法在故障预测中的有效性。Abstract: Because the parameters of the performance of a dynamically tuned gyroscope has degradation,we propose a method for predicting its faults,which combines the self-organizational feature mapping(SOFM) neural network with the hidden Markov model(HMM).Firstly,we gather the vibration,temperature,random drifting,motor power,power source voltage,frequency and other signals of the dynamically tuned gyroscope as the feature information for charactering its degradation,and then use the SOFM neural network to implement the multi-sensor information fusion.Secondly,we use the HMM to transform the early fault signals,which are difficult to detect,into the easily observed information,thus predicting the faults of the dynamically tuned gyroscope.The experimental results show that our method can easily and effectively extract the feature information on the gyroscope's degradation.The training and testing with the HMM show that our method is effective for fault predictions.
-
[1] Sun W,Palazoglu A,Romagnoli J A. Detecting abnormal process trends by wavelet-domain hidden Markov models[J].Journal of the American Institute of Chemical Engineers,2003,(01):140-150. [2] 胡海峰,安茂春,秦国军,胡茑庆. 毖于隐半Markov模型的故障诊断和故障预测方法研究[J].兵工学报,2009,(01):37-41. [3] 曾庆虎,邱静,刘冠军. 基于隐半马尔可夫模型设备退化状态识别方法研究[J].机械科学与技术,2008,(04):429-432. [4] 周云龙,柳长听,赵鹏. 基于自回归-隐马尔可夫模型的离心泵故障诊断方法研究[J].中国机械工程,2009,(07):828-83l. [5] 徐国平,田蔚风,金志华. 基于统计参数分析和RBF网络的动调陀螺故障诊断方法[J].航天控制,2007,(03):88-91. [6] 徐国平. 基于支持向域机的动调陀螺仪寿命预测方法研究[D].上海:上海交通大学,2008. [7] 朱家元,邓振挺,张恒喜,屈裕安. 基于白组织拓扑映射图的发动机故障诊断研究[J].航空动力学报,2002,(05):533-537.[8] 申j叟,黄树红,韩守木,刘德昌. 基于SOFM网络的机械设备多类型信息融合与状态识别[J].机械工程学报,2001,(01):37-4l. [8] 周韶园. 基于HMM的统计过程监控研究[D].杭州:浙江大学,2005. [9] 柳新民. 机电系统BIT间歇故障虚警抑制技术研究[D].长沙:国防科学技术大学,2005. -

计量
- 文章访问数: 112
- HTML全文浏览量: 9
- PDF下载量: 3
- 被引次数: 0