留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

散射矩阵法研究弹性波在异质结声子晶体中的谐振

席锋

席锋. 散射矩阵法研究弹性波在异质结声子晶体中的谐振[J]. 机械科学与技术, 2013, 32(1): 77-80.
引用本文: 席锋. 散射矩阵法研究弹性波在异质结声子晶体中的谐振[J]. 机械科学与技术, 2013, 32(1): 77-80.
Xi Feng. Resonance Study of Elastic Wave in Phononic Crystal Hetero-structure Using Scattering Matrix Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(1): 77-80.
Citation: Xi Feng. Resonance Study of Elastic Wave in Phononic Crystal Hetero-structure Using Scattering Matrix Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(1): 77-80.

散射矩阵法研究弹性波在异质结声子晶体中的谐振

基金项目: 

重庆市教委科技项目(KJ100717)资助

详细信息
    作者简介:

    席锋(1976-),讲师,研究方向为光电子和带隙材料,xifeng7429@ctbu.edu.cn

Resonance Study of Elastic Wave in Phononic Crystal Hetero-structure Using Scattering Matrix Method

  • 摘要: 利用散射矩阵把弹性波在相邻介质层中的前向波和后向波联系起来。利用散射矩阵法计算一维完整和缺陷声子晶体的透射和反射特性,得到与传输矩阵法完全相同的结果。用该方法研究了弹性波在含两个子声子晶体:相同介质不同周期常数,不同介质相同周期常数的异质结声子晶体中的传输特性。结果表明:在异质结的声子晶体的带隙内出现强烈的局域谐振模,其数目由后一个声子晶体的周期数决定。
  • [1] Sigalas M M,Economou E N. Elastic and acoustic wave bandstructure[J]. Journal Sound Vibration,1992,158(2): 377~382
    [2] Kushwaha M S,Halevi P,Dobrzynsi L,et al. Acoustic bandstructure of periodic elastic composites[J]. Physics ReviewLetter,1993,71(13):2022~2025
    [3] Martinez-Sala R,Sancho J,Meseguer F,et al. Sound attenua-tion by sculpture[J]. Nature,1995,378(16)
    [4] Wang G,Yu D L,Wen J H. One-dimensional phononic crystalswith locally resonant structures[J]. Physics Letter A,2004,327(5-6):512~521
    [5] Hou Z L,Fu X J,Liu Y Y. Singularity of the bloch theorem inthe fluid/solid phononic crystal[J]. Physics Review B,2006,73(2)
    [6] Yao Y W,Hou Z L,Liu Y Y. Transmission frequency propertiesof elastic waves along a hetero-phononic crystal waveguide[J].Chinese Physcis Letter,2007,24(2):468~470
    [7] Sz-Chin Steven Lin,Bernhard R Tittmann,Sun J H,et al.Acoustic beamwidth compressor using gradient-index phononiccrystals[J]. Journal of Physics D: Applied Physics,2009,42(18)
    [8] Mourad O,Li Y,Badreddine M Z,et al. A sonic band gapbased on the locally resonant phononic plates with stubs[J].New Journal of Physics,2010,12:1~20
    [9] Dieter M P,Oliver B W,Osamu M. Imaging ripples on phononiccrystals reveals acoustic band structure and bloch harmonics[J].Physics Review Letter,2006,97(5):1~4
    [10] Bryan H S,Bolton J S. A transfer-matrix approach for estimatingthe characteristic impedance and wave numbers of limp and rigidporous materials[J]. Journal Acoustics Society America,2000,107(3):1131~1152
    [11] Yin H Q,Tao R B. Improved transfer matrix method without nu-merical instability[J]. Europhysics Letter,2008,84(5):1~5
    [12] Stephen N G. Transfer matrix analysis of the elastostatics of one-dimensional repetitive structures[A]. Proceedings of the RoyalSociety A[C],2006,462:2245~2270
    [13] Rokhlin S I,Wang L. Stable recursive algorithm for elastic wavepropagation in layered anisotropic media-stiffness matrix method[J].Journal Acoustics Society America,2002,112(3):822~834
    [14] Whittaker D M,Culshaw I S. Scattering-matrix treatment of pat-terned multilayer photonic structures[J]. Physics Review B,1999,60(4):2610~2618
    [15] Liscidini M,Gerace D,Andreani L C,et al. Scattering-matrixanalysis of periodically patterned multilayers with asymmetric unitcells and birefringent media[J]. Physics Review B,2008,77(3):1~11
    [16] Liu Q N. Transfer characteristic of one-dimensional phononiccrystal[J]. Journal of Synthetic Crystals,2008,37(1):179~182
    [17] Xi F,Liu Q N. Particularity of one-dimensional asymmetricdoped phononic crystal[J]. Piezoelectrics & Acoustooptics,2011,33(2):280~283
    [18] Chen Y H,Dong J W,Wang H Z. Omnidirectional resonancemodes in photonic crystal heterostructures containing single-nega-tive materials[J]. Journal Optical Society America B,2006,23(10):2237~2240
  • 加载中
计量
  • 文章访问数:  200
  • HTML全文浏览量:  31
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-17

目录

    /

    返回文章
    返回