留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态环境下移动机器人路径规划的改进蚁群算法

王哲 孙树栋 曹飞祥

王哲, 孙树栋, 曹飞祥. 动态环境下移动机器人路径规划的改进蚁群算法[J]. 机械科学与技术, 2013, 32(1): 42-46.
引用本文: 王哲, 孙树栋, 曹飞祥. 动态环境下移动机器人路径规划的改进蚁群算法[J]. 机械科学与技术, 2013, 32(1): 42-46.
Wang Zhe, Sun Shudong, Cao Feixiang. An Improved Ant Colony Algorithm for Mobile Robot Path Planning Under Dynamic Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(1): 42-46.
Citation: Wang Zhe, Sun Shudong, Cao Feixiang. An Improved Ant Colony Algorithm for Mobile Robot Path Planning Under Dynamic Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(1): 42-46.

动态环境下移动机器人路径规划的改进蚁群算法

基金项目: 

西北工业大学创业种子基金项目(Z2012074)资助

详细信息
    作者简介:

    王哲(1986-),硕士,研究方向为机器人定位及路径规划、机器人控制等,wm2k@163.com;孙树栋,教授,博士生导师,sdsun@nwpu.edu.cn

    王哲(1986-),硕士,研究方向为机器人定位及路径规划、机器人控制等,wm2k@163.com;孙树栋,教授,博士生导师,sdsun@nwpu.edu.cn

An Improved Ant Colony Algorithm for Mobile Robot Path Planning Under Dynamic Environment

  • 摘要: 研究动态环境下移动机器人路径规划问题,采用栅格法对机器人工作空间进行建模,在使用蚁群算法进行全局路径搜索过程中引入人工势场的概念,使蚂蚁对最优路径更加敏感;机器人针对动态环境中可能出现的不同类型障碍物分别执行不同的避障策略;同时提出一种最优路径预测模型用于预测在避障过程中是否出现新的最优路径。算法结合人工势场法和蚁群算法的特点,将全局路径规划与局部路径规划相融合以提高路径搜索的效率。仿真结果验证了该算法的有效性。
  • [1] 李磊等. 移动机器人技术研究现状与未来[J]. 机器人,2002,(5):475~480
    [2] Huang W H,Fajen B R,Fink J R,Warren W H. Visual naviga-tion and obstacle avoidance using a steering potential function[J].Robotics and Autonomous Systems,2006,54:288~299
    [3] 陈华志,谢存禧,曾德怀. 基于神经网络的移动机器人路径规划算法的仿真[J]. 华南理工大学学报,2003,31(6):56~59
    [4] Tewolde G S,Sheng W. Robot path integration in manufacturingprocesses: genetic algorithm versus ant colony optimization[J].IEEE Transactions on Systems,Man,and Cybernetics PartA:Systems and Humans,2008,38(Compendex):278~287
    [5] Dorigo M,Maniezzo V,Colorni A. Ant system: optimization by acolony of cooperating agents[J]. IEEE Transactions on Sys-tems,Man,and Cybernetics,Part B: Cybernetics,1996,26(1):29~41
    [6] Liu G Q,Li T T,et al. The ant algorithm for solving robot pathplanning problem[A]. Third International Conference onInformation Technology and Applications[C],2005:25~27
    [7] 朱庆保,张玉兰. 基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132~136
    [8] 樊晓平,罗熊,易晟,张航. 复杂环境下基于蚁群优化算法的机器人路径规划[J]. 控制与决策,2004,(2):166~170
    [9] Dorigo M,et al. Ant algorithms for discrete optimization[J].Artifical Life,1999,5(3):137~172
  • 加载中
计量
  • 文章访问数:  186
  • HTML全文浏览量:  27
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-11

目录

    /

    返回文章
    返回