留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Kriging插值和遗传算法钛合金车削加工参数优化

刘春景 唐敦兵 何华 陈兴强

刘春景, 唐敦兵, 何华, 陈兴强. 基于Kriging插值和遗传算法钛合金车削加工参数优化[J]. 机械科学与技术, 2013, 32(4): 469-473.
引用本文: 刘春景, 唐敦兵, 何华, 陈兴强. 基于Kriging插值和遗传算法钛合金车削加工参数优化[J]. 机械科学与技术, 2013, 32(4): 469-473.
Liu Chunjing, Tang Dunbing, He Hua, Chen Xingqiang. The Optimization for the Titanium Alloys Turning Based on the Kriging Interpolation and Genetic Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(4): 469-473.
Citation: Liu Chunjing, Tang Dunbing, He Hua, Chen Xingqiang. The Optimization for the Titanium Alloys Turning Based on the Kriging Interpolation and Genetic Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(4): 469-473.

基于Kriging插值和遗传算法钛合金车削加工参数优化

基金项目: 

国家自然科学基金项目(51175262)

安徽高校省级科学研究项目(KJ2013Z192)

教育部新世纪优秀人才支持计划项目(NCET-08)

安徽省高等学校优秀青年基金项目(2010SQRL117)资助

详细信息
    作者简介:

    刘春景(1975-),博士,副教授,研究方向为现代机械设计理论与方法、先进制造技术,liusun7575@163.com

The Optimization for the Titanium Alloys Turning Based on the Kriging Interpolation and Genetic Algorithm

  • 摘要: 钛合金较差的切削加工性不利于保证好的表面完整性,影响钛合金零件的使用性能。基于田口方法建立钛合金车削试验模型,考察切削用量对表面粗糙度、刀具寿命、切削力和材料去除率的影响规律,以材料去除率为目标函数,以表面粗糙度、刀具寿命和切削力为约束函数,基于Krig-ing插值的响应曲面法和遗传算法构建了钛合金车削参数优化模型。研究结果表明:钛合金车削过程参数最优的水平组合为v3f1ap1r1E3,优化结果与初始试验相比,表面粗糙度、刀具寿命、切削力和材料去除率分别改善了75.86%、65.16%、36.41%和557.91%。
  • [1] Ulutan D, zel T. Machining induced surface integrity in titanium and nickel alloys: a review[J]. International Journal of Machine Tools and Manufacture, 2011, 51 (3): 250~280
    [2] Jawahir I S, et al. Surface integrity in material removal processes: recent advances[J]. Annals of the CIRP-manufacturing Technology, 2011, 60(2): 603~626
    [3] Rao B, Dandekar C R, Shin Y C. An experimental and numerical study on the face milling of Ti-6Al-4V alloy: tool performance and surface integrity[J]. Journal of Materials Processing Technology, 2011, 211 (2): 294~304
    [4] 田荣鑫等. 面向加工表面粗糙度的钛合金高速铣削工艺参数区间敏感性及优选[J]. 航空学报, 2010, 31 (12): 2464~2470
    [5] Elmagrabi N, Che Hassan C H, Jaharah A G, et al. High speed milling of Ti-6Al-4V using coated carbide tools[J]. European Journal of Scientific Research, 2008, 22(2): 153~162
    [6] Sun J, Guo Y B. A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V[J]. Journal of Materials Processing Technology, 2009, 209(8): 4036~4042
    [7] zel T, et al. Investigations on the effects of multi-layered coated inserts in machining Ti-6Al-4V alloy with experiments and finite element simulations[J]. Annals of the CIRP-Manufacturing Technology, 2010, 59(1): 77~82
    [8] zel T, Thepsonthi T, Ulutan D, et al. Experiments and finite element simulations on micro-milling of Ti-6Al-4V alloy with uncoated and cBN coated micro-tools[J]. Annals of the CIRPManufacturing Technology, 2011, 60(1): 85~88
    [9] Dandekar C R, et al. Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining[J]. International Journal of Machine Tools and Manufacture, 2010, 50(2): 174~182
    [10] 张烘州等. 响应曲面法在表面粗糙度预测模型及参数优化中的应用[J]. 上海交通大学学报, 2010, 44(4): 447~451
    [11] Zareena A R, et al. Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium[J]. Journal of Materials Processing Technology, 2012, 212(3): 560~570
    [12] Zain A M, Haron H, Sharif S. Prediction of surface roughness in the end milling machining using artificial neural network[J].Expert Systems with Applications, 2010, 37(2): 1755~1768
    [13] Zain A M, Haron H, Sharif S. Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process[J]. Expert Systems with Applications,2010, 37(6): 4650~4659
    [14] Zain A M, et al. Regression and ANN models for estimating minimum value of machining performance[J]. Applied Mathematical Modelling, 2012, 36(4): 1477~1492
    [15] Tansel I N, Gülmez S, Demetgul M, et al. Taguchi methodGONNS integration: complete procedure covering from experimental design to complex optimization[J]. Expert Systems with Applications, 2011, 38(5): 4780~4789
    [16] ISO Standard 3685. Tool-life Testing with Single-point Turning tools[S]. 1993
    [17] Gill S S, Singh J. An adaptive neuro-fuzzy inference system modeling for material removal rate in stationary ultrasonic drilling of sillimanite ceramic[J]. Expert Systems with Applications,2010, 37(8): 5590~5598
    [18] 赵威等. 氮气油雾介质下 Ti-6Al-4V 钛合金高速铣削试验研究[J]. 南京航空航天大学学报, 2006, 38(5): 634~638
    [19] Sun J H, Hsueh B R. Optical design and multi-objective optimization with fuzzy method for miniature zoom optics[J]. Optics and Lasers in Engineering, 2011, 49(7): 962~971
    [20] Kaymaz I. Application of kriging method to structural reliability problems[J]. Structural Safety, 2007, 27(2): 133~151
    [21] Lebaal N, Nouari M, Ginting A. A new optimization approach based on Kriging interpolation and sequential quadratic programming algorithm for end milling refractory titanium alloys[J]. Applied Soft Computing, 2011, 11 (8): 5110~5119
    [22] 谢延敏. 基于 Kriging 模型和灰色关联分析的板料成形工艺稳健优化设计研究[D]. 上海: 上海交通大学, 2007
  • 加载中
计量
  • 文章访问数:  157
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-08
  • 刊出日期:  2015-06-10

目录

    /

    返回文章
    返回