留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机性能退化下极小样本高速列车轴承的可靠性评估

朱德馨 刘宏昭

朱德馨, 刘宏昭. 随机性能退化下极小样本高速列车轴承的可靠性评估[J]. 机械科学与技术, 2013, 32(10): 1499-1504.
引用本文: 朱德馨, 刘宏昭. 随机性能退化下极小样本高速列车轴承的可靠性评估[J]. 机械科学与技术, 2013, 32(10): 1499-1504.
Zhu Dexin, Liu Hongzhao. Reliability Evaluation of High-speed Train Bearing Based on Stochastic Performance Deterioration with Minimum Sample[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(10): 1499-1504.
Citation: Zhu Dexin, Liu Hongzhao. Reliability Evaluation of High-speed Train Bearing Based on Stochastic Performance Deterioration with Minimum Sample[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(10): 1499-1504.

随机性能退化下极小样本高速列车轴承的可靠性评估

基金项目: 

国家科技支撑计划项目(2011BAF09B01)

陕西省重点学科建设专项资金项目资助

详细信息
    作者简介:

    朱德馨(1981-),博士研究生,研究方向为机械可靠理论,控制理论及应用,zdx-cn@163.com;刘宏昭(联系人),教授,博士生导师,Liuhongzhao@xaut.edu.cn

    朱德馨(1981-),博士研究生,研究方向为机械可靠理论,控制理论及应用,zdx-cn@163.com;刘宏昭(联系人),教授,博士生导师,Liuhongzhao@xaut.edu.cn

Reliability Evaluation of High-speed Train Bearing Based on Stochastic Performance Deterioration with Minimum Sample

  • 摘要: 针对高速列车轴承性能退化过程缓慢、退化轨迹较为平稳的特点,本文采用随机性能退化过程建模,将Wiener过程的未知参数看作随机变量,根据轴承相对温度性能退化幅度的大小以及工程经验确定出合理的退化轨迹模型,最终得出轴承寿命的可靠度函数。通过对某型号轴承试验数据的实例分析,表明文中的方法能够在极小样本无失效数据情况下充分利用性能退化数据,完成产品寿命的可靠性评估。
  • [1] 朱德馨,刘宏昭. 极小样本下高速列车轴承的可靠性评估[J]. 中南大学学报,2013,44(3):963~969
    [2] Wang X. Wiener processes with random effects for degradationdata[J]. Journal of Multivariate Analysis,2010,101(2):340~351
    [3] 彭宝华,周经纶,金光. 综合多种信息的金属化膜电容器可靠性评估[J]. 强激光与粒子束,2009,21(8):1271~1275
    [4] Tseng S T,Tang J,Ku I H. Determination of optimal burn-inparameters and residual life for highly reliable products[J].Naval Research Logistics,2003,50:1~14
    [5] Tang J,Su T S. Estimating failure time distribution and its pa-rameters based on intermediate data from a Wiener degradationmodel[J]. Naval Research Logistics,2008,55(3):265~276
    [6] Nicolai R P,Dekker R,Noortwijk J M. A comparison of modelsfor measurable deterioration: An application to coatings on steelstructures [J]. Reliability Engineering and System Safety,2007,92(12):1635~160
    [7] Whitemore G A. Estimating degradation by a Wiener diffusionprocess subject to measurement error[J]. Lifetime Data Analy-sis,1995,1:307~319
    [8] Whitemore G A,Schenkelberg F. Modelling accelerated degra-tion data using Wiener diffusion with a scale transformation[J].Lifetime Data Analysis,1997,3(1):27~45
    [9] Lee M L T,Whitmore G A. Threshold regression for survival a-nalysis: modeling event times by a stochastic process reaching aboundary[J]. Statistical Science,2006,21(4):501~513
    [10] Yuan X X. Stochastic Modeling of Deteriortaion in NuclearPower Plant Components[D]. Ontario,Canada: University ofWaterloo,2007
    [11] Balka J,Desmond A F,McNicholas P D. Review and implemen-tation of cure models based on first hitting times for Wienerprocesses[J]. Lifetime Data Analysis,2009,15 (12):147~176
    [12] Chikkara R S,Folks J L. The Inverse Gaussian Distribution [M].New York: Marcell Dekker,1989
    [13] Efron B,Tibshirani R. An Introduction to the Bootstrap[M]. NewYork: Cha pman and Hall,1993
  • 加载中
计量
  • 文章访问数:  125
  • HTML全文浏览量:  27
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-16
  • 刊出日期:  2015-06-10

目录

    /

    返回文章
    返回