Study on the Evaluation Methods of Circularity Errors in Three-dimensional Space
-
摘要: 为解决三维空间中圆度误差的精确评定问题,针对三坐标测量机检测圆度误差时因存在测量误差而使各实际测点不是精确地位于同一理想截平面上的特点,根据计算几何学和误差理论,提出了基于空间测点集算术平均中心点的最小二乘平面拟合方法,推导了其数学模型;并对国家标准中圆度误差评定的最小外接圆法、最大内接圆法和最小区域圆法进行了三维扩展;还对前两种方法作了改进,建立了此3种方法的数学模型和算法流程。最后的数字实验表明:以上3种算法是有效的。Abstract: Aiming at the characteristic that actual measured points obtained from coordinate measuring machine(CMM) were not located on the same ideal plane precisely due to the existence of measurement errors,in order to improve the evaluation accuracy of circularity errors in three-dimensional space,the least squares plane based on the center point of arithmetic average of the measured points set(LSPBC) was proposed and the mathematical model was derived,according to computational geometry and errors theory.Then three circularity error evaluation methods with minimum circumscribed circle,maximum inscribed circle and minimum zone circle in the national standard were extended into the three-dimensional space.On the basis of them,the first two kinds of methods were improved; the mathematical models and evaluation steps of the three kinds of methods were built.Finally,the validity of proposed methods was verified through numerical experiments.
-
Key words:
- computational geometry /
- estimation /
- feature extraction /
- mathematical models
-
[1] 吴伟仁,姜黎,张之敬等. 以计算几何为基础的圆度误差评定算法[J]. 宇航学报,2012,33(6):816~822 [2] 张春阳,雷贤卿,李济顺等. 基于几何优化的圆度误差评定算法[J]. 机械工程学报,2010,46(12):8~12 [3] GB/T 7235-2004 产品几何量技术规范 (GPS)-评定圆度误差的方法,半径变化量测量[S]. 2004 [4] 王秀梅,秦体恒. 基于混沌优化算法的最小二乘圆参数估计[J]. 武汉理工大学学报,2008,30(8):101~104 [5] 黄富贵,郑育军. 基于区域搜索的圆度误差评定方法[J]. 计量学报,2008,29(2):117~119 [6] 吴新杰,张丹,李媛等. 基于粒子群优化算法处理圆度误差[J]. 传感技术学报,2007,20(4):832~834 [7] Lei X Q,Zhang C Y,Xue Y J,et al. Roundness error evalua-tion algorithm based on polar coordinate transform[J]. Measure-ment,2011,44(2):345~350 [8] Gadelmawla E S. Simple and efficient algorithms for roundnessevaluation from the coordinate measurement data[J]. Measure-ment,2010,43(2):223~235 [9] Wen X L,Xia Q G,Zhao Y B. An effective genetic algorithm forcircularity error unified evaluation[J]. International Journal ofMachine Tools and Manufacture,2006,46(14):1770~1777 [10] Sun T H. Applying particle swarm optimization algorithm to round-ness measurement[J]. Expert Systems with Applications,2009,36(2):3428~3438 [11] 彭晓南,刘飞,雷贤卿. 一种利用坐标测量机实现圆度误差评价的方法[J]. 仪器仪表学报,2008,29(8):1654~1658 [12] 蔡婧. 六项形位误差评定数学模型的研究[D]. 沈阳:东北大学,2009 [13] 李航,于连栋. 空间带端面圆的圆度误差评定方法[J]. 黑龙江科技学院学报,2010,20(1):65~67 [14] Li X M,Shi Z Y. The relationship between the minimum zone circleand the maximum inscribed circle and the minimum circumscribedcircle[J]. Precision Engineering,2009,33(3):284~290 [15] 李秀明. 精密制造中典型平面曲线的识别及形状误差评定研究[D]. 北京:北京工业大学,2009 -

计量
- 文章访问数: 127
- HTML全文浏览量: 14
- PDF下载量: 1
- 被引次数: 0