留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于共形几何代数的Stephenson-Ⅲ型机构的死点辨识

邱健 范守文

邱健, 范守文. 基于共形几何代数的Stephenson-Ⅲ型机构的死点辨识[J]. 机械科学与技术, 2014, 33(1): 13-17.
引用本文: 邱健, 范守文. 基于共形几何代数的Stephenson-Ⅲ型机构的死点辨识[J]. 机械科学与技术, 2014, 33(1): 13-17.
Qiu Jian, Fan Shou-wen. Identification of Dead-center Positions for Stephenson-Ⅲ Linkage Mechanisms Based on the Conformal Geometric Algebra[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(1): 13-17.
Citation: Qiu Jian, Fan Shou-wen. Identification of Dead-center Positions for Stephenson-Ⅲ Linkage Mechanisms Based on the Conformal Geometric Algebra[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(1): 13-17.

基于共形几何代数的Stephenson-Ⅲ型机构的死点辨识

基金项目: 

国家自然科学基金项目(51175067)

机械传动国家重点实验室开放基金项目(SKLMT-KFKT-201010)

流体动力与机电系统国家重点实验室开放基金项目(GZKF-201029)资助

详细信息
    作者简介:

    邱健(1986-),硕士研究生,研究方向为机械产品设计缺陷辨识,qiujian987@163.com;范守文(联系人),教授,博士生导师,shouwenfan@263.net

    邱健(1986-),硕士研究生,研究方向为机械产品设计缺陷辨识,qiujian987@163.com;范守文(联系人),教授,博士生导师,shouwenfan@263.net

Identification of Dead-center Positions for Stephenson-Ⅲ Linkage Mechanisms Based on the Conformal Geometric Algebra

  • 摘要: 基于共形几何代数方法建立了Stephenson-Ⅲ型机构的闭环约束方程,运用欧拉公式将方程表示成复数指数形式,描述了公式中各参数与共形空间中各矢量的相互关系,推导出了求解连杆机构运动姿态的输入-输出方程组,并在给定输入下得到了机构位置解。根据各输入杆变量的Jacobian矩阵的行列式的值等于0,推导得出了机构死点位置的判别式,得到了在死点构型下机构的位置解,通过与传统数值法计算结果的比对,验证了该方法的正确性和有效性。
  • [1] 李洪波.共形几何代数-几何代数的新理论和计算框架[J].计算机辅助设计与图形学学报,2005,17(11):2383-2393Li H B.Conformal geometric algebra-a new framework for computational geometry[J].Journal of Computer Aided Design and Computer Graphics,2005,17(11):2383-2393(in Chinese)
    [2] Li H B.Hyperbolic geometry with clifford algebra[J].Acta Applicant Mathematician,1997,48(3):317-358
    [3] 李洪波.共形几何代数与运动和形状的刻画[J].计算机辅助设计与图形学学报,2006,18(7):895-901Li H B.Conformal geometric algebra for motion and shape description[J].Journal of Computer Aided Design and Computer Graphics,2006,18(7):895-901(in Chinese)
    [4] 李洪波.共形几何代数与几何不变量的代数运算[J].计算机辅助设计与图形学学报,2006,18(7):902-911Li H B.Conformal geometric algebra and algebraic manipulations of geometric invariants[J].Journal of Computer Aided Design and Computer Graphics,2006,18(7):902-911(in Chinese)
    [5] 倪振松,廖启征,魏世民,等.基于共形几何代数的一种平面并联机构位置正解[J].北京邮电大学学报,2010,33(2):7-10Ni Z S,Liao Q Z,Wei S M,et al.Forward displacement of a planar parallel mechanisms position based on conformal geometric algebra[J].Journal of Beijing University of Posts and Telecommunications,2010,33(2):7-10(in Chinese)
    [6] 胡良文.基于共形几何代数的三维动态人体模型研究[D].上海:东华大学,2011Hu L W.Research on Three-dimensional dynamie model of the human body based on the conformal geometric algebra[D].Dong hua University,2011(in Chinese)
    [7] Ke P S.Circuit and branch identification of planar fourand six-bar mechanisms[D].Taiwan:National Cheng Kung University,2002
    [8] Weng W H.Branch identification of planar six-bar mechanisms[D].Taiwan:National Cheng Kung University,2003
    [9] Yan H S,Wu L L.On the dead-center positions of planar linkage mechanisms[C] //American Society Of Mechanical Engineers.Design Engineering Division.Trends And Developments In Mechanisms,Machines,and robotics,September 25-28,1988,Kissimmee,Florida,USA.New York,ASME,1988:71-78
    [10] 邹炎火,郭晓宁.Stephenson-Ⅲ六杆机构死点位置的结式消元法识别[J].机械设计与研究,2010,26(2):32-34Zou Y H,Guo X N.Identification the Dead-center positions of stephenson-six-bar linkages by sylvester resultant[J].Machine Design and Research,2010,26(2):32-34(in Chinese)
    [11] 王娟.共形几何代数的应用实例分析[D].北京:中国石油大学,2009Wang J.Analysis of applications with conformal geometric algebra[D].China University of Petroleum,2009(in Chinese)
  • 加载中
计量
  • 文章访问数:  114
  • HTML全文浏览量:  25
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-06
  • 刊出日期:  2015-06-10

目录

    /

    返回文章
    返回