留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理温度对SLM成形316L不锈钢组织性能影响研究

姚宇荃

姚宇荃. 热处理温度对SLM成形316L不锈钢组织性能影响研究[J]. 机械科学与技术,2024,43(2):249-257 doi: 10.13433/j.cnki.1003-8728.20230390
引用本文: 姚宇荃. 热处理温度对SLM成形316L不锈钢组织性能影响研究[J]. 机械科学与技术,2024,43(2):249-257 doi: 10.13433/j.cnki.1003-8728.20230390
YAO Yuquan. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of 316L Stainless Steel Formed by SLM[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 249-257. doi: 10.13433/j.cnki.1003-8728.20230390
Citation: YAO Yuquan. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of 316L Stainless Steel Formed by SLM[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 249-257. doi: 10.13433/j.cnki.1003-8728.20230390

热处理温度对SLM成形316L不锈钢组织性能影响研究

doi: 10.13433/j.cnki.1003-8728.20230390
详细信息
    作者简介:

    姚宇荃,硕士研究生,yaoyuquan0520@163.com

  • 中图分类号: TG142.7

Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of 316L Stainless Steel Formed by SLM

  • 摘要: 使用选区激光熔化(SLM)技术制备316L不锈钢试样以及残余应力样件,采用光学显微镜、扫描电子显微镜(SEM,配备电子背散射衍射探头EBSD)、显微硬度计等研究不同热处理工艺对SLM成形316L的显微组织、显微硬度、力学性能以及残余应力的影响,得到最优热处理工艺。结果表明SLM制备制件组织致密,在最优热处理1 000 ℃、保温2 h制度下,试样的性能稳定,显微硬度及拉伸性能各向异性差异小,残余应力小。此研究为SLM 成形316L不锈钢的力学性能优化及显微组织调控提供了强有力的基础。
  • 图  1  BLT-S210激光选区熔化成形设备

    Figure  1.  BLT-S210 selective laser melting and forming equipment

    图  2  316L不锈钢粉末SEM形貌

    Figure  2.  SEM morphology of 316L stainless steel powder

    图  3  激光成形方向示意图

    Figure  3.  Laser forming direction

    图  4  标准拉伸试样图纸

    Figure  4.  Standard tensile sample

    图  5  悬臂梁梳齿试样模型

    Figure  5.  Comb tooth sample model of a cantilever beam

    图  6  SLM成形316L不锈钢显微组织形貌

    Figure  6.  Microstructure of 316L stainless steel formed by SLM

    图  7  SLM成形316L不锈钢EBSD分析

    Figure  7.  EBSD analysis of 316L stainless steel formed by SLM

    图  8  SLM成形316L不锈钢的局部取向差图

    Figure  8.  Local misorientation of 316L stainless steel formed by SLM

    图  9  不同热处理状态SLM成形316L不锈钢的应力-应变曲线

    Figure  9.  Stress-strain curve of 316L stainless steel formed by SLM in different heat treatment states

    图  10  不同热处理状态SLM成形316L不锈钢的维氏硬度

    Figure  10.  Vickers hardness of 316L stainless steel formed by SLM after different heat treatment

    图  11  不同热处理状态SLM成形316L不锈钢的拉伸断口形貌

    Figure  11.  Tensile fracture morphology of 316L stainless steel formed by SLM in different heat treatment states

    图  12  SLM成形316L不锈钢梳齿试样线切割说明

    Figure  12.  Wire-cut specification of comb tooth sample of 316L stainless steel formed by SLM

    图  13  不同热处理状态SLM成形316L不锈钢的残余应力评估

    Figure  13.  Residual stress assessment of 316L stainless steel formed by SLM in different heat treatment states

    表  1  316L不锈钢粉末各元素的质量分数

    Table  1.   Mass fraction of each element of 316L stainless powder    %

    Fe Cr Ni Mo Mn Si P C S
    Bal. 17.35 10.05 2.15 0.53 0.29 0.014 <0.0050 0.001
    下载: 导出CSV

    表  2  316L不锈钢粉末物理性能

    Table  2.   Physical properties of 316L stainless steel powder

    球形度 空心粉率/% 流动性/50g 粒径分布/µm
    Dv(10) Dv(50) Dv(90)
    0.91 0.15 16.7 21.3 37.16 68.45
    下载: 导出CSV

    表  3  热处理方案

    Table  3.   Heat treatment scheme

    试验组号热处理方式
    1打印态
    2400 ℃-2h-氩冷
    3600 ℃-2h-氩冷
    4800 ℃-2h-氩冷
    51000 ℃-2h-氩冷
    下载: 导出CSV

    表  4  SLM成形316L不锈钢经过不同热处理后的Schmid因子平均值

    Table  4.   The average value of Schmid factor of 316L stainless steel formed by SLM after different heat treatments

    打印态 1000 ℃-2h
    XY Z XY Z
    0.449 0.447 0.451 0.450
    下载: 导出CSV

    表  5  不同热处理状态SLM成形316L不锈钢的室温拉伸性能

    Table  5.   Room temperature tensile property of 316L stainless steel formed by SLM in different heat treatment states

    状态 方向 Rm/MPa Rp0.2/MPa A/% Z/%
    打印态 XY 705( ± 2.1) 575( ± 1.4) 41.5( ± 0.7) 78( ± 0.7)
    Z 650( ± 2.1) 482( ± 3.5) 49.0( ± 0.4) 84( ± 1.4)
    400 ℃-2h XY 691( ± 0.6) 553( ± 2.6) 42.0( ± 0.3) 81( ± 0.6)
    Z 637( ± 0.6) 477( ± 1.7) 54.5( ± 0.7) 83( ± 0)
    600 ℃-2h XY 695( ± 0) 513( ± 2.6) 44.0( ± 0.8) 75( ± 0)
    Z 645( ± 0.6) 448( ± 0.6) 56.0( ± 0.3) 81( ± 0.6)
    800 ℃-2h XY 693( ± 0.6) 432( ± 0) 44.0( ± 0) 72( ± 0)
    Z 645( ± 1.0) 392( ± 1.5) 52.5( ± 0.3) 74( ± 0)
    1000 ℃-2h XY 649( ± 2.8) 390( ± 4.5) 51.0( ± 0.6) 69( ± 1.2)
    Z 609( ± 0.6) 357( ± 2.1) 61.5( ± 0.5) 73( ± 0.6)
      注:括号里的数值为误差值。
    下载: 导出CSV

    表  6  不同热处理后室温抗拉强度XY向与Z向差异

    Table  6.   Difference in room temperature tensile strength of XY and Z samples after different heat treatment

    热处理制度 打印态 400 ℃-2h 600 ℃-2h 800 ℃-2h 1000 ℃-2h
    抗拉强度XYZ差值/MPa 55 54 50 48 40
    下载: 导出CSV
  • [1] 田杰, 黄正华, 戚文军, 等. 金属选区激光熔化的研究现状[J]. 材料导报, 2017, 31(29): 90-94.

    TIAN J, HUANG Z H, QI W J, et al. Research progress on selective laser melting of metal[J]. Materials Review, 2017, 31(29): 90-94. (in Chinese)
    [2] 程灵钰, 何召辉, 孙靖, 等. 激光选区熔化成形316L不锈钢组织和力学性能分析[J]. 激光与红外, 2021, 51(2): 171-177. doi: 10.3969/j.issn.1001-5078.2021.02.007

    CHENG L Y, HE Z H, SUN J, et al. Microstructure and mechanical properties of 316L stainless steel by selective laser melting[J]. Laser & Infrared, 2021, 51(2): 171-177. (in Chinese) doi: 10.3969/j.issn.1001-5078.2021.02.007
    [3] 赵曙明. 基于颗粒增强的316L不锈钢选区激光熔化成型工艺及性能研究[D]. 北京: 中国工程物理研究院, 2017.

    ZHAO S M. Study on process and properties of 316L stainless steel selective laser melting based on particle reinforcement[D]. Beijing: China Academy of Engineering Physics, 2017. (in Chinese)
    [4] SAXENA P, GAJERA H, SHAH D, et al. Effect of SLM process parameters on hardness and microstructure of stainless steel 316 material[J]. Materials Today:Proceedings, 2022, 50: 1653-1659. doi: 10.1016/j.matpr.2021.09.144
    [5] ZHOU C S, WANG J, HU S Y, et al. enhanced corrosion resistance of additively manufactured 316L stainless steel after heat treatment[J]. Journal of the Electrochemical Society, 2020, 167(14): 141504. doi: 10.1149/1945-7111/abc10e
    [6] 陈玉娟. 选区激光熔化316L不锈钢复合材料工艺及性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

    CHEN Y J. Investigation on parameters and properties of selective laser melting 316L stainless steel composites[D]. Harbin: Harbin Engineering University, 2019. (in Chinese)
    [7] 黄玉山, 谭超林, 马文有, 等. 热处理对选区激光熔化马氏体时效钢组织和性能的影响[J]. 材料热处理学报, 2017, 38(11): 59-64.

    HUANG Y S, TAN C L, MA W Y, et al. Effect of heat treatment on microstructure and properties of selective laser melting maraging steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(11): 59-64. (in Chinese)
    [8] 丁利, 李怀学, 王玉岱, 等. 热处理对激光选区熔化成形316不锈钢组织与拉伸性能的影响[J]. 中国激光, 2015, 42(4): 0406003. doi: 10.3788/CJL201542.0406003

    DING L, LI H X, WANG Y D, et al. Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42(4): 0406003. (in Chinese) doi: 10.3788/CJL201542.0406003
    [9] 边培莹. 热处理工艺对316L不锈钢粉末激光选区熔化成形的残余应力及组织的影响[J]. 材料热处理学报, 2019, 40(4): 90-97.

    BIAN P Y. Effect of heat treatment on residual stress and microstructure of 316L stainless steel powder formed by selective laser melting[J]. Transactions of Materials and Heat Treatment, 2019, 40(4): 90-97. (in Chinese)
    [10] 杨登翠. 选区激光熔化316L不锈钢制备工艺、组织性能及耐蚀性研究[D]. 北京: 北京科技大学, 2022.

    YANG D C. Study on preparation, microstructure, property and corrosion resistance of 316L stainless steel by selective laser melting[D]. Beijing: University of Science and Technology Beijing, 2022. (in Chinese)
    [11] 程灵钰, 朱小刚, 刘正武, 等. 热处理对激光选区熔化成形316L不锈钢组织和力学性能的影响[J]. 材料热处理学报, 2020, 41(7): 80-86.

    CHENG L Y, ZHU X G, LIU Z W, et al. Effect of heat treatment on microstructure and mechanical properties of 316L stainless steel prepared by selective laser melting[J]. Transactions of Materials and Heat Treatment, 2020, 41(7): 80-86. (in Chinese)
    [12] TASCIOGLU E, KARABULUT Y, KAYNAK Y. Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(5-6): 1947-1956. doi: 10.1007/s00170-020-04972-0
    [13] 吕稀, 王云鹏, 王曦, 等. 热处理对增材制造核用不锈钢微观结构的影响[J]. 精密成形工程, 2022, 14(7): 77-85. doi: 10.3969/j.issn.1674-6457.2022.07.011

    LYU X, WANG Y P, WANG X, et al. Effect of heat treatment on the microstructure of nuclear stainless steel fabricated by additive manufacturing[J]. Journal of Netshape Forming Engineering, 2022, 14(7): 77-85. (in Chinese) doi: 10.3969/j.issn.1674-6457.2022.07.011
    [14] SETIEN I, CHIUMENTI M, VAN DER VEEN S, et al. Empirical methodology to determine inherent strains in additive manufacturing[J]. Computers & Mathematics with Applications, 2019, 78(7): 2282-2295.
    [15] 杨立军, 郑航, 李俊, 等. 热处理对激光选区熔化成型316L合金综合性能的影响[J]. 材料导报, 2021, 35(12): 12103-12109. doi: 10.11896/cldb.20050165

    YANG L J, ZHENG H, LI J, et al. Effect of heat treatment on comprehensive properties of selective laser melting manufacturing 316L alloy[J]. Materials Reports, 2021, 35(12): 12103-12109. (in Chinese) doi: 10.11896/cldb.20050165
    [16] SABOORI A, AVERSA A, MARCHESE G, et al. Microstructure and mechanical properties of AISI 316L produced by directed energy deposition-based additive manufacturing: a review[J]. Applied Sciences, 2020, 10(9): 3310. doi: 10.3390/app10093310
    [17] 张再超. 基于增材制造技术的316L不锈钢微观组织及力学性能演变规律的研究[D]. 济南: 山东建筑大学, 2021.

    ZHANG Z C. Microstructure and mechanical properties evolution of 316L stainless steel based on additive manufacturing technology[D]. Ji'nan: Shandong Jianzhu University, 2021. (in Chinese)
    [18] 侯东坡, 宋仁伯, 项建英, 等. 固溶处理对316L不锈钢组织和性能的影响[J]. 材料热处理学报, 2010, 31(12): 61-65.

    HOU D P, SONG R B, XIANG J Y, et al. Effect of solution treatment on microstructure and properties of 316L stainless steel[J]. Transactions of Materials and Heat Treatment, 2010, 31(12): 61-65. (in Chinese)
    [19] LIU Y D, ZHANG M, SHI W T, et al. Study on performance optimization of 316L stainless steel parts by high-efficiency selective laser melting[J]. Optics & Laser Technology, 2021, 138: 106872.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  160
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-28
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回