留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静压支撑单点渐进成形厚向应变分布研究

尚苗 李言 赵兴百 杨明顺 陈匡禹

尚苗,李言,赵兴百, 等. 静压支撑单点渐进成形厚向应变分布研究[J]. 机械科学与技术,2023,42(11):1880-1886 doi: 10.13433/j.cnki.1003-8728.20230298
引用本文: 尚苗,李言,赵兴百, 等. 静压支撑单点渐进成形厚向应变分布研究[J]. 机械科学与技术,2023,42(11):1880-1886 doi: 10.13433/j.cnki.1003-8728.20230298
SHANG Miao, LI Yan, ZHAO Xingbai, YANG Mingshun, CHEN Kuangyu. Study on Thickness-strain Distribution in Single-point Incremental Forming with Hydrostatic Supporting[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1880-1886. doi: 10.13433/j.cnki.1003-8728.20230298
Citation: SHANG Miao, LI Yan, ZHAO Xingbai, YANG Mingshun, CHEN Kuangyu. Study on Thickness-strain Distribution in Single-point Incremental Forming with Hydrostatic Supporting[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1880-1886. doi: 10.13433/j.cnki.1003-8728.20230298

静压支撑单点渐进成形厚向应变分布研究

doi: 10.13433/j.cnki.1003-8728.20230298
基金项目: 国家自然科学基金项目(52075437)
详细信息
    作者简介:

    尚苗(1986−),副教授,博士,研究方向为先进制造与现代加工技术,goodseeding@outlook.com

    通讯作者:

    李言,教授,博士生导师,jyxy-ly@xaut.edu.cn

  • 中图分类号: TG386

Study on Thickness-strain Distribution in Single-point Incremental Forming with Hydrostatic Supporting

  • 摘要: 采用单点渐进成形技术单道次成形复杂形状的薄壁零件时,厚度分布不均匀及过度减薄易于引起板材的断裂和成形失效。将静压支撑引入单点渐进成形中,形成一种静压支撑单点渐进成形工艺;通过促进材料流动和厚向应变分布来提高板材厚度分布的均匀性。选用初始厚度为1 mm的1060铝板,以静压支撑单点渐进成形的圆锥台件为研究对象,通过数值模拟和实验研究分析了静压参数对厚向应变分布和材料流动规律的影响。结果表明:0 ~ 0.18 MPa的静压支撑有利于过渡变形区Ⅱ的快速成形,有利于主变形区Ⅲ的厚向应变分布;在有利压力范围内,静压压力越大,由Ⅱ区流向Ⅲ区的材料越多,厚向应变分布越均匀,制件成形性能越好。
  • 图  1  HS-SPIF原理

    Figure  1.  HS-SPIF principles

    图  2  三角单元剪切模型

    Figure  2.  Triangular unit shear model

    图  3  HS-SPIF的有限元模型

    Figure  3.  Finite element model of HS-SPIF

    图  4  模拟的最终形状

    Figure  4.  Simulated final shape

    图  5  刀具运动轨迹

    Figure  5.  Tool trajectory

    图  6  厚向应变分布云图

    Figure  6.  Thickness-strain distribution cloud

    图  7  静压支撑对不同区域厚向应变的影响

    Figure  7.  Effect of hydrostatic support on thickness strain indifferent regions

    图  8  HS-SPIF 实验装置

    Figure  8.  HS-SPIF Experimental Device

    图  9  0.19 MPa的成形制件

    Figure  9.  Formed parts of 0.19 MPa

    图  10  切割试件半剖图

    Figure  10.  Cutting specimen half-section diagram

    图  11  SPIF厚向应变分布(0 MPa)

    Figure  11.  Thickness-strain distribution of SPIF (0 MPa)

    图  12  HS-SPIF厚向应变分布(0.16 MPa)

    Figure  12.  Thickness strain distribution of HS-SPIF (0.16 MPa)

    图  13  各压力下的实验厚向应变分布

    Figure  13.  Experimental thickness strain distribution ofdifferent pressures

    表  1  HS-SPIF有限元模型各参数

    Table  1.   Parameters of HS-SPIF finite element model

    类别板材工具头夹具
    网格划分网格类型:S4R单元
    单元尺寸:1 mm × 1 mm
    单元数量:7 606
    节点个数:17 821
    解析性刚体解析性钢体
    模型壳体金属塑性解析性钢体解析性钢体
    材料1060铝板(密度2.71 g/mm3
    弹性模量68 GPa,泊松比0.33,
    屈服强度138 MPa,抗拉强度145 MPa)
    淬火高速钢合金钢
    接触条件板材与工具头接触类型:面-面接触;板材与夹具接触类型:面-面接触
    边界条件X、Y、Z方向的转动被约束
    板材边缘表面的6个自由度被约束
    XY方向的转动被约束
    转速700 r/min
    6个自由度被约束
    下载: 导出CSV
  • [1] ULLAH S, LI Y L, LI X Q, et al. A review on the deformation mechanism and formability enhancement strategies in incremental sheet forming[J]. Archives of Civil and Mechanical Engineering, 2022, 23(1): 55. doi: 10.1007/s43452-022-00585-4
    [2] PENG W X, OU H A. Deformation mechanisms and fracture in tension under cyclic bending plus compression, single point and double-sided incremental sheet forming processes[J]. International Journal of Machine Tools and Manufacture, 2023, 184: 103980. doi: 10.1016/j.ijmachtools.2022.103980
    [3] 柏朗, 李言, 杨明顺, 等. 超声振动-单点增量复合成形过程中成形力的分析与建模[J]. 机械工程学报, 2019, 55(2): 42-50. doi: 10.3901/JME.2019.02.042

    BAI L, LI Y, YANG M S, et al. Analytical model of ultrasonic vibration single point incremental forming force[J]. Journal of Mechanical Engineering, 2019, 55(2): 42-50. (in Chinese) doi: 10.3901/JME.2019.02.042
    [4] 邱旭, 高新勤, 侯晓莉, 等. 金属管材变角度单点渐进翻边成形方法研究[J]. 机械科学与技术, 2022, 41(4): 566-572.

    QIU X, GAO X Q, HOU X L, et al. Research of Forming method of variable angle single point in incremental flanging of metal tube[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 566-572. (in Chinese)
    [5] CAO T T, LU B, OU H G, et al. Investigation on a new hole-flanging approach by incremental sheet forming through a featured tool[J]. International Journal of Machine Tools and Manufacture, 2016, 110: 1-17. doi: 10.1016/j.ijmachtools.2016.08.003
    [6] WU S, GENG P H, MA N S, et al. Contact-induced vibration tool in incremental sheet forming for formability improvement of aluminum sheets[J]. Journal of Materials Research and Technology, 2022, 17: 1363-1379. doi: 10.1016/j.jmrt.2022.01.103
    [7] 周六如. 板料数控渐进成形变形区厚度变化规律的研究[J]. 机械工程学报, 2011, 47(18): 50-54. doi: 10.3901/JME.2011.18.050

    ZHOU L R. Research on the thickness change laws in numerical control incremental sheet forming[J]. Journal of Mechanical Engineering, 2011, 47(18): 50-54. (in Chinese) doi: 10.3901/JME.2011.18.050
    [8] NIRALA H K, AGRAWAL A. Fractal geometry rooted incremental toolpath for incremental sheet forming[J]. Journal of Manufacturing Science and Engineering, 2018, 140(2): 021005. doi: 10.1115/1.4037237
    [9] AZAOUZI M, LEBAAL N. Tool path optimization for single point incremental sheet forming using response surface method[J]. Simulation Modelling Practice and Theory, 2012, 24: 49-58. doi: 10.1016/j.simpat.2012.01.008
    [10] KHALIL U, AZIZ M H, QAMAR S, et al. Parametric optimization on single point incremental forming of aluminum alloy AA 2219-O using response surface methodology[J]. Arabian Journal for Science and Engineering, 2022, 48(3): 4025-4044.
    [11] LI X Q, HAN K, XU P, et al. Experimental and theoretical analysis of the thickness distribution in multistage two point incremental sheet forming[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1-2): 191-203. doi: 10.1007/s00170-020-05037-y
    [12] 金志浩, 高锦张, 郑璐恺. 1060铝板圆台件凸模支撑渐进成形临界成形角的研究[J]. 锻压技术, 2022, 47(6): 99-106.

    JIN Z H, GAO J Z, ZHENG L K. Study on critical forming angle in progressive forming with punch support for 1060Al plate conical frustum parts[J]. Forging Stamping Technology, 2022, 47(6): 99-106. (in Chinese)
    [13] BEN KHALIFA N, THIERY S. Incremental sheet forming with active medium[J]. CIRP Annals, 2019, 68(1): 313-316. doi: 10.1016/j.cirp.2019.04.043
    [14] KUMAR Y, KUMAR S. Experimental and analytical evaluation of incremental sheet hydro-forming strategies to produce high forming angle sheets[J]. Heliyon, 2019, 5(6): e01801. doi: 10.1016/j.heliyon.2019.e01801
    [15] 姚志远, 杨明顺, 李言, 等. 等静压支撑单点增量成形力的研究[J]. 机械科学与技术, 2019, 38(6): 902-908. doi: 10.13433/j.cnki.1003-8728.20180264

    YAO Z Y, YANG M S, LI Y, et al. Research on single point incremental forming force under isostatic pressure support[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(6): 902-908. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20180264
    [16] LIU Z B, DANIEL W J T, LI Y L, et al. Multi-pass deformation design for incremental sheet forming: Analytical modeling, finite element analysis and experimental validation[J]. Journal of Materials Processing Technology, 2014, 214(3): 620-634. doi: 10.1016/j.jmatprotec.2013.11.010
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  32
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回