留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型连续阻尼可调悬架系统超视距预瞄控制策略研究

桂永建 马英照 严天一

桂永建,马英照,严天一. 新型连续阻尼可调悬架系统超视距预瞄控制策略研究[J]. 机械科学与技术,2023,42(8):1324-1331 doi: 10.13433/j.cnki.1003-8728.20230266
引用本文: 桂永建,马英照,严天一. 新型连续阻尼可调悬架系统超视距预瞄控制策略研究[J]. 机械科学与技术,2023,42(8):1324-1331 doi: 10.13433/j.cnki.1003-8728.20230266
GUI Yongjian, MA Yingzhao, YAN Tianyi. Research on Over-horizon Preview Control Strategy of a New Type of Continuous Damping Adjustable Suspension System[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1324-1331. doi: 10.13433/j.cnki.1003-8728.20230266
Citation: GUI Yongjian, MA Yingzhao, YAN Tianyi. Research on Over-horizon Preview Control Strategy of a New Type of Continuous Damping Adjustable Suspension System[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1324-1331. doi: 10.13433/j.cnki.1003-8728.20230266

新型连续阻尼可调悬架系统超视距预瞄控制策略研究

doi: 10.13433/j.cnki.1003-8728.20230266
基金项目: 国家自然科学基金项目(51475248)与山东省自然科学基金面上项目(ZR2016EEM49)
详细信息
    作者简介:

    桂永建(1997−),硕士研究生,研究方向为汽车电子控制技术,18254809880@163.com

    通讯作者:

    严天一,教授,硕士生导师,yan_7012@126.com

  • 中图分类号: TP391.9;U461.4

Research on Over-horizon Preview Control Strategy of a New Type of Continuous Damping Adjustable Suspension System

  • 摘要: 针对连续阻尼可调悬架系统中存在的典型时滞问题,本文提出一种基于云平台的超视距预瞄控制策略。首先,利用MATLAB/Simulink构建七自由度连续阻尼可调悬架系统整车动力学模型;然后利用云服务器搭建超视距预瞄控制策略运行平台,并基于消息队列遥测传输(Message queuing telemetry transport, MQTT)协议将车载控制单元与云服务器接入物联网平台,实现云端控制策略与车载控制单元的数据通讯;最后利用CarSim-Simulink联合仿真模型及车载控制单元进行硬件在环试验。结果表明,所提出的控制策略不仅能改善悬架系统的平顺性,而且将预瞄控制策略部署于云端的方式可有效降低车载电子控制单元负荷。
  • 图  1  七自由度整车行驶动力学模型

    Figure  1.  Seven degrees of freedom vehicle driving dynamics model

    图  2  超视距预瞄控制策略框图

    Figure  2.  Beyond line-of-sight control strategy block diagram

    图  3  阻尼控制模型策略框图

    Figure  3.  Damping control model strategy block diagram

    图  4  硬件在环试验框架

    Figure  4.  Hardware-in-the-loop test frame

    图  5  垂向加速度响应

    Figure  5.  Vertical acceleration response

    图  6  侧倾角加速度响应

    Figure  6.  Roll angle acceleration response

    图  7  俯仰角加速度响应

    Figure  7.  Pitch angle acceleration response

    图  8  左后车轮悬架动行程响应

    Figure  8.  Left rear wheel suspension dynamic travel response

    图  9  右后车轮动载荷

    Figure  9.  Right rear wheel dynamic load

    表  1  模糊控制规则表

    Table  1.   Fuzzy control rule table

    e1e2
    NBNSZEPSPB
    NBNBNMNSZEZE
    NSNMNSZEZEPS
    ZENSZEZEZEPS
    PSNSZEPSPMPM
    PBZEPSPSPMPB
    下载: 导出CSV

    表  2  新型连续阻尼可调悬架系统性能评价指标

    Table  2.   Performance evaluation index of a new continuous damping adjustable suspension system

    评价指标无控制MPC
    控制
    控制效果
    提升
    垂向加速度峰值−1.231−1.1308.2%
    垂向加速度均方根值0.4460.4049.4%
    侧倾角加速度峰值−1.435−1.3615.1%
    侧倾角加速度均方根值0.4980.43313%
    俯仰角加速度峰值−1.8661.7028.7%
    俯仰角加速度均方根值0.6350.56910.3%
    左后车轮悬架动行程峰值0.0129−0.01216.2%
    左后车轮悬架动行程均方根值0.00470.004112.7%
    右后车轮动载荷峰值−1790.43−1503.9815.9%
    右后车轮动载荷均方根值626.87533.3814.9%
    下载: 导出CSV
  • [1] 来飞, 胡博. 汽车主动悬架技术的研究现状[J]. 南京理工大学学报, 2019, 43(4): 518-526. doi: 10.14177/j.cnki.32-1397n.2019.43.04.020

    LAI F, HU B. Research status of automotive active suspension technology[J]. Journal of Nanjing University of Science and Technology, 2019, 43(4): 518-526. (in Chinese) doi: 10.14177/j.cnki.32-1397n.2019.43.04.020
    [2] LI P S, LAM J, CHEUNG K C. Multi-objective control for active vehicle suspension with wheelbase preview[J]. Journal of Sound and Vibration, 2014, 333(21): 5269-5282. doi: 10.1016/j.jsv.2014.06.017
    [3] GÖHRLE C, WAGNER A, SCHINDLER A, et al. Active suspension controller using MPC based on a full-car model with preview information[C]//2012 American Control Conference (ACC). Montreal: IEEE, 2012: 497-502.
    [4] THEUNISSEN J, SORNIOTTI A, GRUBER P, et al. Regionless explicit model predictive control of active suspension systems with preview[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4877-4888. doi: 10.1109/TIE.2019.2926056
    [5] LI Z J, KOLMANOVSKY I, ATKINS E, et al. Cloud aided semi-active suspension control[C]//2014 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS). Orlando: IEEE, 2014: 76-83.
    [6] LI Z J, KOLMANOVSKY I, ATKINS E, et al. H filtering for cloud-aided semi-active suspension with delayed road information[J]. IFAC-PapersOnLine, 2015, 48(12): 275-280. doi: 10.1016/j.ifacol.2015.09.390
    [7] MIHÁLY A, KISARI Á, GÁSPÁR P, et al. Adaptive semi-active suspension design considering cloud-based road information[J]. IFAC-PapersOnLine, 2019, 52(5): 249-254. doi: 10.1016/j.ifacol.2019.09.040
    [8] MIHÁLY A, KISARI Á, GÁSPÁR P, et al. Design of adaptive vehicle suspension using cloud-based road data[C]//2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Munich: IEEE, 2017: 529-534.
    [9] BASARGAN H, MIHÁLY A, KISARI Á, et al. Vehicle semi-active suspension control with cloud-based road information[J]. Periodica Polytechnica Transportation Engineering, 2021, 49(3): 242-249. doi: 10.3311/PPtr.18593
    [10] 李克强, 常雪阳, 李家文, 等. 智能网联汽车云控系统及其实现[J]. 汽车工程, 2020, 42(12): 1595-1605. doi: 10.19562/j.chinasae.qcgc.2020.12.001

    LI K Q, CHANG X Y, LI J W, et al. Cloud control system for intelligent and connected vehicles and its application[J]. Automotive Engineering, 2020, 42(12): 1595-1605. (in Chinese) doi: 10.19562/j.chinasae.qcgc.2020.12.001
    [11] 张洪昌, 郭军, 赵伟, 等. 超视界路况下网联汽车的辅助驾驶方法[J]. 中国机械工程, 2020, 31(14): 1666-1671. doi: 10.3969/j.issn.1004-132X.2020.14.004

    ZHANG H C, GUO J, ZHAO W, et al. Assisted driving method of network-connected vehicle in out-of-sight roads[J]. China Mechanical Engineering, 2020, 31(14): 1666-1671. (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.14.004
    [12] 张立军, 张天侠. 车辆四轮相关路面非平稳随机输入通用时频模型[J]. 振动与冲击, 2008, 27(7): 75-78. doi: 10.3969/j.issn.1000-3835.2008.07.017

    ZHANG L J, ZHANG T X. General nonstationary random input model of road surface with four wheels correlated[J]. Journal of Vibration and Shock, 2008, 27(7): 75-78. (in Chinese) doi: 10.3969/j.issn.1000-3835.2008.07.017
    [13] 郭翠娟, 暴宁, 荣锋. 基于MQTT的物联网平台研究与设计[J]. 计算机工程与设计, 2022, 43(8): 2378-2384. doi: 10.16208/j.issn1000-7024.2022.08.036

    GUO C J, BAO N, RONG F. Research and design of internet of things platform based on MQTT[J]. Computer Engineering and Design, 2022, 43(8): 2378-2384. (in Chinese) doi: 10.16208/j.issn1000-7024.2022.08.036
    [14] 陈文艺, 梁宁宁, 杨辉. 基于MQTT的物联网网关双向通信系统设计[J]. 传感器与微系统, 2022, 41(8): 100-103. doi: 10.13873/J.1000-9787(2022)08-0100-04

    CHEN W Y, LIANG N N, YANG H. Design of two-way communication system of IoT gateway based on MQTT[J]. Transducer and Microsystem Technologies, 2022, 41(8): 100-103. (in Chinese) doi: 10.13873/J.1000-9787(2022)08-0100-04
    [15] 张亮修, 王宇, 吴光强, 等. 汽车阻尼可调半主动悬架混杂模型预测控制[J]. 西安交通大学学报, 2017, 51(11): 156-164. doi: 10.7652/xjtuxb201711022

    ZHANG L X, WANG Y, WU G Q, et al. Hybrid model predictive control of semi-active suspension with variable damping shock absorber[J]. Journal of Xi'an Jiaotong University, 2017, 51(11): 156-164. (in Chinese) doi: 10.7652/xjtuxb201711022
    [16] 范健文, 高远, 蓝会立, 等. 汽车非线性悬架系统的最优模糊复合控制策略研究[J]. 机械设计与制造, 2014(4): 85-88. doi: 10.3969/j.issn.1001-3997.2014.04.027

    FAN J W, GAO Y, LAN H L, et al. Control of a nonlinear vehicle suspension using hybrid strategy of optimal controller and fuzzy controller[J]. Machinery Design & Manufacture, 2014(4): 85-88. (in Chinese) doi: 10.3969/j.issn.1001-3997.2014.04.027
    [17] GÖHRLE C, SCHINDLER A, WAGNER A, et al. Model predictive control of semi-active and active suspension systems with available road preview[C]//2013 European Control Conference (ECC). Zurich: IEEE, 2013: 1499-1504.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  71
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回