留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

试验机大型改装结构静强度数值仿真与试验验证

鲜章林 郝琳召

鲜章林, 郝琳召. 试验机大型改装结构静强度数值仿真与试验验证[J]. 机械科学与技术, 2023, 42(7): 1165-1170. doi: 10.13433/j.cnki.1003-8728.20230194
引用本文: 鲜章林, 郝琳召. 试验机大型改装结构静强度数值仿真与试验验证[J]. 机械科学与技术, 2023, 42(7): 1165-1170. doi: 10.13433/j.cnki.1003-8728.20230194
XIAN Zhanglin, HAO Linzhao. Digital Simulation and Experimental Verification of Static Strength of Large Refitted Structure of Testing Aircraft[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 1165-1170. doi: 10.13433/j.cnki.1003-8728.20230194
Citation: XIAN Zhanglin, HAO Linzhao. Digital Simulation and Experimental Verification of Static Strength of Large Refitted Structure of Testing Aircraft[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 1165-1170. doi: 10.13433/j.cnki.1003-8728.20230194

试验机大型改装结构静强度数值仿真与试验验证

doi: 10.13433/j.cnki.1003-8728.20230194
详细信息
    作者简介:

    鲜章林(1991-), 工程师, 硕士, 研究方向为试验机改装结构设计, 试验机改装强度设计与验证, 453418355@qq.com

  • 中图分类号: V217

Digital Simulation and Experimental Verification of Static Strength of Large Refitted Structure of Testing Aircraft

  • 摘要: 针对飞行试验对试验飞机大型改装结构提出的高安全性需求,设计了大型改装结构的静强度数值仿真与试验验证流程,分析了部段级装配结构进行数值仿真与静力试验的误差来源,采用以静强度试验结果为基准的基于灵敏度的多点搜索算法对有限元模型进行修正,以保证试验机在试验包线内的结构静强度满足要求。应用该流程与方法于某发动机试验短舱主承力结构设计中,开展了结构设计与优化、静强度试验设计与实施、数据处理与计算模型修正、非试验载荷工况的验算等工作,验证了上述流程与方法的有效性,实现了试验机大型改装结构静强度数值仿真与试验验证的全流程闭环。
  • 图  1  试验机大型改装结构设计与验证主要流程

    Figure  1.  The main process of design and verification of large refitted structure of testing aircraft

    图  2  有限元模型修正流程

    Figure  2.  Revision process of finite element model

    图  3  某发动机试验短舱中段主承力结构

    Figure  3.  Main bearing structure of the middle section of an engine test nacelle

    图  4  短舱中段结构与前后段对接端面应力分布

    Figure  4.  Nacelle midsection structure and stress distribution of the butt face of the fore-and-aft segments

    图  5  优化后的试验短舱中段主承力结构及调整区域

    Figure  5.  The optimized main bearing structure and adjustment area of the middle section of the test nacelle

    图  6  试验加载系统典型加载工况

    Figure  6.  Typical loading condition of test loading system

    图  7  工况1中各点位移测量结果

    Figure  7.  Displacement measurement results of each point in working condition 1

    图  8  工况1中x向位移测量与仿真结果对比

    Figure  8.  Comparison of x-direction displacement measurement and simulation results in working condition 1

    图  9  调整过程中典型状态灵敏度分析图

    Figure  9.  Typical state sensitivity analysis diagram during adjustment

    图  10  目标函数变化曲线

    Figure  10.  Objective function change curve

    图  11  前对接框上对比测点位置

    Figure  11.  Position of the comparison measurement points on the front docking frame

    图  12  典型测点处试验值与仿真值应力对比

    Figure  12.  Stress comparison between test value and simulation value at typical measuring point

    表  1  部分典型设计工况

    Table  1.   Some typical design conditions

    工况 三向过载/g 扭矩/Nm 推力/t 类型
    nx ny nz
    1 9 - - - - 坠毁
    2 - - -4.5 - -18 坠毁
    3 - - 7.5 - -18 最大法向过载
    4 - 4 1.5 - - 侧向载荷工况
    5 - - 1.5 59 793 - 发动机卡滞
    下载: 导出CSV

    表  2  部分修正变量变化表

    Table  2.   Partially modified variable change table

    参数 初始值 下限 上限 终值
    前框右侧腹板材料刚度/MPa 7.1×104 4.9×104 9.2×104 5.0×104
    中框左侧筋条材料刚度/MPa 7.1×104 4.9×104 9.2×104 9.2×104
    前角盒连接螺栓x刚度/(N·mm-1) 2.8×105 1.9×105 3.6×105 3.6×105
    前角盒连接螺栓y刚度/(N·mm-1) 1.8×105 1.2×105 2.3×105 1.9×105
    前角盒连接螺栓z刚度/(N·mm-1) 1.8×105 1.2×105 2.3×105 2.3×105
    下载: 导出CSV
  • [1] 刘冰. 海鸥300飞机起落架强度分析与试验[D]. 南京: 南京航空航天大学, 2010.

    LIU B. Strength analysis and test of the landing gears of seagull-300 aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)
    [2] 徐辉. 某无人机起落架结构静动态力学性能分析与试验验证[D]. 南京: 南京航空航天大学, 2018.

    XU H. Static and dynamic mechanical performance analysis and experimental verification of an unmanned aerial vehicle landing gear structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [3] 鲜章林, 李思潭. 某飞机机头改装过渡段强度及振动特性分析[J]. 机械工程师, 2018(4): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-JXGU201804037.htm

    XIAN Z L, LI S T. Simulation analysis of structure strength and vibration characteristic about an aircraft modified nose transition section[J]. Mechanical Engineer, 2018(4): 102-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXGU201804037.htm
    [4] 鲜章林, 闫鹏庆, 颜凯. 试验机平面气密框筋条联合优化设计[J]. 机械设计与制造工程, 2022, 51(1): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ202201016.htm

    XIAN Z L, YAN P Q, YAN K. The joint optimum design of planar airtight frame stiffeners distribution[J]. Machine Design and Manufacturing Engineering, 2022, 51(1): 74-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ202201016.htm
    [5] 王立, 梁昊天, 王相乾, 等. 航空发动机试验器连接机匣动力学模型的确认方法[J]. 机械制造与自动化, 2021, 50(5): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD202105022.htm

    WANG L, LIANG H T, WANG X Q, et al. Dynamic model validation of assembled aero-engine test rig casing[J]. Machine Building & Automation, 2021, 50(5): 82-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD202105022.htm
    [6] 麻越垠, 郝鹏, 马斌, 等. 风洞模型支撑机构有限元模型修正与确认[J]. 宇航总体技术, 2021, 5(5): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YHZJ202105007.htm

    MA Y Y, HAO P, MA B, et al. Finite element model updating and validating for model support mechanism of wind tunnel[J]. Astronautical Systems Engineering Technology, 2021, 5(5): 51-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YHZJ202105007.htm
    [7] 张钟鸣, 乔思佳, 朱钰珏, 等. 空气涡轮起动机整机结构动力学分步建模与确认策略[J]. 强度与环境, 2022, 49(4): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHJ202204003.htm

    ZHANG Z M, QIAO S J, ZHU Y Y, et al. Hierarchical modeling and updating strategy for the structural dynamics of an air turbine starter[J]. Structure & Environment Engineering, 2022, 49(4): 15-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDHJ202204003.htm
    [8] 胡立春. 基于灵敏度分析的桥式起重机有限元模型修正[D]. 太原: 太原科技大学, 2018.

    HU L C. Bridge crane finite element model updating based on sensitivity analysis[D]. Taiyuan: Taiyuan University of Science and Technology, 2018. (in Chinese)
    [9] 梁鹏, 赵云鹏, 邬刚柔, 等. 基于加权Kendall相关系数和序贯代理模型的有限元模型修正[J]. 中国公路学报, 2021, 34(12): 57-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112005.htm

    LIANG P, ZHAO Y P, WU G R, et al. Fem updating based on weighted Kendall correlation coefficient and sequential surrogate model[J]. China Journal of Highway and Transport, 2021, 34(12): 57-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112005.htm
    [10] 徐喆, 辛景舟, 唐启智, 等. 基于响应面法和麻雀搜索算法的结构有限元模型修正[J]. 科学技术与工程, 2021, 21(21): 9094-9101. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202121051.htm

    XU Z, XIN J Z, TANG Q Z, et al. Finite element model updating based on response surface method and sparrow search algorithm[J]. Science and Technology and Engineering, 2021, 21(21): 9094-9101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202121051.htm
    [11] JANG J, SMYTH A W. Model updating of a full-scale FE model with nonlinear constraint equations and sensitivity-based cluster analysis for updating parameters[J]. Mechanical Systems and Signal Processing, 2017, 83: 337-355.
    [12] JANG J, SMYTH A W. Bayesian model updating of a full-scale finite element model with sensitivity-based clustering[J]. Structural Control & Health Monitoring, 2017, 24(11): e2004.
    [13] BARTILSON D T, JANG J, SMYTH A W. Finite element model updating using objective-consistent sensitivity-based parameter clustering and Bayesian regularization[J]. Mechanical Systems and Signal Processing, 2019, 114: 328-345.
    [14] 王静, 马爱敏, 周冰冰. 基于Optistruct的集成框架强度分析及尺寸优化[J]. 重型汽车, 2020(3): 14-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXQC202003022.htm

    WANG J, MA A M, ZHOU B B. Strength analysis and size optimization of integrated frame based on Optistruct[J]. Heavy Truck, 2020(3): 14-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXQC202003022.htm
    [15] 邹元杰. Bush有限单元原理及其在航天器结构建模中的应用[J]. 航天器工程, 2010, 19(1): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201001037.htm

    ZOU Y J. Bush finite element principle and its application in building structural models for spacecraft[J]. Spacecraft Engineering, 2010, 19(1): 99-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201001037.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  98
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 刊出日期:  2023-07-25

目录

    /

    返回文章
    返回