留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溢流管开缝对旋流器分离性能影响研究

张文华 李东来 刘秀林 张宏斌 郭建华

张文华,李东来,刘秀林, 等. 溢流管开缝对旋流器分离性能影响研究[J]. 机械科学与技术,2023,42(6):857-865 doi: 10.13433/j.cnki.1003-8728.20230192
引用本文: 张文华,李东来,刘秀林, 等. 溢流管开缝对旋流器分离性能影响研究[J]. 机械科学与技术,2023,42(6):857-865 doi: 10.13433/j.cnki.1003-8728.20230192
ZHANG Wenhua, LI Donglai, LIU Xiulin, ZHANG Hongbin, GUO Jianhua. Research on Influence of Overflow Pipe Slit on Separation Performance Hydrocyclone[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 857-865. doi: 10.13433/j.cnki.1003-8728.20230192
Citation: ZHANG Wenhua, LI Donglai, LIU Xiulin, ZHANG Hongbin, GUO Jianhua. Research on Influence of Overflow Pipe Slit on Separation Performance Hydrocyclone[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 857-865. doi: 10.13433/j.cnki.1003-8728.20230192

溢流管开缝对旋流器分离性能影响研究

doi: 10.13433/j.cnki.1003-8728.20230192
基金项目: 国家自然科学基金项目(51175273)与黑龙江省省属高等学校基本科研业务费科研项目(135409309)
详细信息
    作者简介:

    张文华(1964−),副教授,研究方向为流体机械及过程装备设计,1394895431@qq.com

  • 中图分类号: TQ051.8

Research on Influence of Overflow Pipe Slit on Separation Performance Hydrocyclone

  • 摘要: 针对水力旋流器分离过程中溢流管内部流体高速旋转造成的大量能量损失,基于压降机理,增加溢流管过流量可降低旋流器内部流体动能损失,将直径为100 mm型号旋流器溢流管设计为:水平开缝、上倾开缝、下倾开缝的渐缩开缝型溢流管。选用多相流VOF模型和雷诺应力模型(RSM)计算不同型号旋流器的分离性能,对旋流器内部速度场、压力场进行了细致分析,并在相同实验条件下对改进前后的水力旋流器进行物料分离实验,研究新型水力旋流器节能效应。结果表明:压降降低主要与轴向速度、切向速度衰减、压强降低梯度有关。入口流量在880 ~1 000 mL/s范围内,溢流管水平开缝、上倾开缝、下倾开缝的旋流器与常规旋流器分离效率基本趋同,且在入口流量为980 mL/s时分离效率达到最高,此时相较于常规型水力旋流器压降降幅率分别为23.79%、11.65%、26.46%,节能效果显著。
  • 图  1  常规型水力旋流器结构尺寸示意图

    图  2  渐缩开缝型溢流管结构

    图  3  水力旋流器实验工艺流程图

    图  4  玻璃珠细粉粒径分布图

    图  5  水力旋流器轴向截面位置

    图  6  TypeⅠ水力旋流器网格无关性验证

    图  7  TypeⅠ旋流器模拟值与实验值对比

    图  8  流量-效率关系曲线

    图  9  流量-压降关系曲线

    图  10  改进后旋流器压降降低百分率

    图  11  旋流器轴截面压力分布云图

    图  12  旋流器横截面压力分布云图

    图  13  4种型号旋流器入口流量980 mL/s柱、锥段切向速度分布曲线

    图  14  4种型号旋流器不同位置轴向速度分布曲线

    图  15  溢流管开缝上、下轴向截面位置压强分布曲线

    图  16  入口流量980 mL/s粒径-粒级效率曲线

  • [1] LI F, LIU P K, YANG X H, et al. Purification of granular sediments from wastewater using a novel hydrocyclone[J]. Powder Technology, 2021, 393: 751-763. doi: 10.1016/j.powtec.2021.08.025
    [2] LI F, LIU P K, YANG X H, et al. Numerical simulation on the effects of different inlet pipe structures on the flow field and seperation performance in a hydrocyclone[J]. Powder Technology, 2020, 373: 254-266. doi: 10.1016/j.powtec.2020.06.066
    [3] 刘鸿雁, 王亚, 韩天龙, 等. 水力旋流器溢流管结构对微细颗粒分离的影响[J]. 化工学报, 2017, 68(5): 1921-1931. doi: 10.11949/j.issn.0438-1157.20161478

    LIU H Y, WANG Y, HAN T L, et al. Influence of vortex finder configurations on separation of fine particles[J]. CIESC Journal, 2017, 68(5): 1921-1931. (in Chinese) doi: 10.11949/j.issn.0438-1157.20161478
    [4] 刘鸿雁, 韩天龙, 王亚, 等. 水力旋流器新型出口挡板结构对分离性能的影响[J]. 化工学报, 2018, 69(5): 2081-2088.

    LIU H Y, HAN T L, WANG Y, et al. Influence of new outlet configurations with baffle on hydrocycloneon separation performance[J]. CIESC Journal, 2018, 69(5): 2081-2088. (in Chinese)
    [5] JIANG L Y, LIU P K, YANG X H, et al. Short-circuit flow in hydrocyclones with arc-shaped vortex finders[J]. Chemical Engineering & Technology, 2018, 41(9): 1783-1792.
    [6] 刘培坤, 杜启隆, 张悦刊. 内螺旋道式旋流器流场特征及分离性能[J]. 流体机械, 2022, 50(3): 53-59.

    LIU P K, DU Q L, ZHANG Y K. The flow field characteristics and the separation performance of inner spiral channel cyclone[J]. Fluid Machinery, 2022, 50(3): 53-59. (in Chinese)
    [7] 刘国庆, 张悦刊, 刘培坤, 等. 单、双溢流管旋流器流场特征及分离性能研究[J]. 金属矿山, 2021(11): 151-157.

    LIU G Q, ZHANG Y K, LIU P K, et al. Study on the flow field characteristics and separation performance of the single and double overflow pipe hydrocyclone[J]. Metal Mine, 2021(11): 151-157. (in Chinese)
    [8] 刘培坤, 石智豪, 姜兰越, 等. 组合型溢流管旋流器分离性能研究[J]. 流体机械, 2022, 50(4): 51-57.

    LIU P K, SHI Z H, JIANG L Y, et al. Study on separation performance of hydrocyclone with combined vortex finder structure[J]. Fluid Machinery, 2022, 50(4): 51-57. (in Chinese)
    [9] 刘培坤, 杨广坤, 杨兴华, 等. 具有溢流帽结构的旋流器流场特征及分离性能研究[J]. 流体机械, 2021, 49(1): 1-6.

    LIU P K, YANG G K, YANG X H, et al. Study on flow field characteristics and separation performance of hydrocyclone with overflow cap structure[J]. Fluid Machinery, 2021, 49(1): 1-6. (in Chinese)
    [10] 兰雅梅, 张婷婷, 王世明, 等. 旋流器结构参数对其性能的影响分析[J]. 化工机械, 2021, 48(5): 678-682.

    LAN Y M, ZHANG T T, WANG S M, et al. Numerical analysis of the influence of hydrocyclone structural parameters on its performance[J]. Chemical Engineering & Machinery, 2021, 48(5): 678-682. (in Chinese)
    [11] 谢苗, 朱昀, 张保国. 水力分级旋流器工艺参数匹配优化研究[J/OL]. 机械科学与技术, 1-9 [2023-02-10]. https://doi.org/10.13433/j.cnki.1003-8728.20230033.

    XIE M, ZHU Y, ZHANG B G. Research on process parameter matching optimization of hydraulic grading cyclone[J/OL]. Mechanical Science and Technology for Aerospace Engineering, 1-9 [2023-02-10]. https://doi.org/10.13433/j.cnki.1003-8728.20230033. (in Chinese)
    [12] 王驰, 崔广文. 溢流管直径对三锥角旋流器分选结果的影响[J/OL]. 煤炭科学技术, 1-11[2022-08-19]. http://kns.cnki.net/kcms/detail/11.2402.TD.20200513.1816.002.html.

    WANG C, CUI G W. Effect of overflow pipe diameter on sorting results of three-cone angle cyclone[J/OL]. Coal Science and Technology, 1-11[2022-08-19]. http://kns.cnki.net/kcms/detail/11.2402.TD.20200513.1816.002.html. (in Chinese)
    [13] 刘秀林, 陈建义, 姜淑凤, 等. 旋风分离器结构优化实验研究[J]. 现代化工, 2019, 39(12): 205-209. doi: 10.16606/j.cnki.issn0253-4320.2019.12.043

    LIU X L, CHEN J Y, JIANG S F, et al. Experimental study on optimization of structure of cyclone separator[J]. Modern Chemical Industry, 2019, 39(12): 205-209. (in Chinese) doi: 10.16606/j.cnki.issn0253-4320.2019.12.043
    [14] 王卫兵, 孙亚权, 冯静安, 等. 缝隙式排气管对旋风分离器的性能影响[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(11): 1201-1210.

    WANG W B, SUN Y Q, FENG J A, et al. Effect of slot vortex finder on the performance of cyclone separator[J]. Journal of Tianjin University (Science and Technology), 2019, 52(11): 1201-1210. (in Chinese)
    [15] 孟文, 王江云, 毛羽, 等. 排气管直径对旋分器非轴对称旋转流场的影响[J]. 石油学报(石油加工), 2015, 31(6): 1309-1316.

    MENG W, WANG J Y, MAO Y, et al. Effect of vortex finder diameter on non-axisymmetric rotating flow field in cyclone separator[J]. Acta Petrolei Sinica (Petroleum Processing), 2015, 31(6): 1309-1316. (in Chinese)
    [16] 刘鹤, 贾新勇, 王博. 溢流管结构参数对旋风分离器性能影响的仿真研究[J]. 流体机械, 2020, 48(11): 6-10. doi: 10.3969/j.issn.1005-0329.2020.11.002

    LIU H, JIA X Y, WANG B. Simulation study on influence of structural parameters of overflow pipe on performance of cyclone separator[J]. Fluid Machinery, 2020, 48(11): 6-10. (in Chinese) doi: 10.3969/j.issn.1005-0329.2020.11.002
    [17] 郑建祥, 周天鹤. 旋风分离器排气管缩口半径优化的数值模拟[J]. 流体机械, 2015, 43(12): 28-32. doi: 10.3969/j.issn.1005-0329.2015.12.006

    ZHENG J X, ZHOU T H. Numerical simulation to the reducing radius optimization of cyclone separator exhaust pipe[J]. Fluid Machinery, 2015, 43(12): 28-32. (in Chinese) doi: 10.3969/j.issn.1005-0329.2015.12.006
    [18] GHODRAT M, KUANG S B, YU A B, et al. Numerical analysis of hydrocyclones with different vortex finder configurations[J]. Minerals Engineering, 2014, 63: 125-138. doi: 10.1016/j.mineng.2014.02.003
    [19] VIEIRA L G M, BARROZO M A S. Effect of vortex finder diameter on the performance of a novel hydrocyclone separator[J]. Minerals Engineering, 2014, 57: 50-56. doi: 10.1016/j.mineng.2013.11.014
    [20] MURTHY Y R, BHASKAR K U. Parametric CFD studies on hydrocyclone[J]. Powder Technology, 2012, 230: 36-47. doi: 10.1016/j.powtec.2012.06.048
    [21] WAKIZONO Y, MAEDA T, FUKUI K, et al. Effect of ring shape attached on upper outlet pipe on fine particle classification of gas-cyclone[J]. Separation and Purification Technology, 2015, 141: 84-93. doi: 10.1016/j.seppur.2014.11.028
    [22] HWANG K J, HWANG Y W, YOSHIDA H. Design of novel hydrocyclone for improving fine particle separation using computational fluid dynamics[J]. Chemical Engineering Science, 2013, 85: 62-68. doi: 10.1016/j.ces.2011.12.046
    [23] 庞学诗. 水力旋流器技术与应用[M]. 北京: 中国石化出版社, 2011.

    PANG X S. Hydrocyclone technology and application[M]. Beijing: China Petrochemical Press, 2011. (in Chinese)
    [24] 刘培坤,姜兰越,杨兴华,等.锥形溢流管旋流器分离性能研究[J].中国矿业,2016,25(6):129-132.

    LIU P K, JIANG L Y, YANG X H, et al. Study on separation performance of a hydrocyclone with conical overflow pipe[J]. China Mining Magazine, 2016, 25(6):129-132. (in Chinese)
    [25] 陈建义. 切流返转式旋风分离器分离理论和优化设计方法的研究[D]. 北京: 中国石油大学(北京), 2007: 94-96.

    CHEN J Y. Research on separation theory and optimization design method of shear flow reversal cyclone[D]. Beijing: China University of Petroleum (Beijing), 2007: 94-96. (in Chinese)
  • 加载中
图(16)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  211
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回