留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

304不锈钢的微弧等离子体放电抛光机理与试验研究

赵智渊 贾祯 刘旭 麻高领 李淑娟

赵智渊,贾祯,刘旭, 等. 304不锈钢的微弧等离子体放电抛光机理与试验研究[J]. 机械科学与技术,2023,42(6):906-913 doi: 10.13433/j.cnki.1003-8728.20230191
引用本文: 赵智渊,贾祯,刘旭, 等. 304不锈钢的微弧等离子体放电抛光机理与试验研究[J]. 机械科学与技术,2023,42(6):906-913 doi: 10.13433/j.cnki.1003-8728.20230191
ZHAO Zhiyuan, JIA Zhen, LIU Xu, MA Gaoling, LI Shujuan. Mechanism and Experimental Study on Micro-arc Plasma Discharge Polishing of 304 Stainless Steel[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 906-913. doi: 10.13433/j.cnki.1003-8728.20230191
Citation: ZHAO Zhiyuan, JIA Zhen, LIU Xu, MA Gaoling, LI Shujuan. Mechanism and Experimental Study on Micro-arc Plasma Discharge Polishing of 304 Stainless Steel[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 906-913. doi: 10.13433/j.cnki.1003-8728.20230191

304不锈钢的微弧等离子体放电抛光机理与试验研究

doi: 10.13433/j.cnki.1003-8728.20230191
基金项目: 国家自然科学基金项目(51575442)与陕西省重点研发项目(2021GY-275)
详细信息
    作者简介:

    赵智渊(1966−),工程师,本科,研究方向为先进制造技术, 734230425@qq.com

    通讯作者:

    李淑娟,教授,博士生导师,shujuanli@xaut.edu.cn

  • 中图分类号: TH16

Mechanism and Experimental Study on Micro-arc Plasma Discharge Polishing of 304 Stainless Steel

  • 摘要: 针对目前用于抛光不锈钢的方法普遍存在抛光质量差、抛光效率低以及环境污染严重的问题,本文以304不锈钢为加工对象,将电化学加工与放电加工相结合,提出了微弧等离子体放电抛光方法。基于电化学理论和流注理论对微弧等离子体放电抛光机理进行了研究。通过设计正交试验并采用田口分析法和方差分析法对试验结果进行了分析,找到了关于材料去除率和表面粗糙度的优化参数组合并进行了试验验证。结果表明,电源电压、抛光时间和电解液温度对材料去除率具有显著影响,抛光时间和电源电压对表面粗糙度具有显著影响。微弧等离子体放电抛光304不锈钢的材料去除率最大可以达到11.73 μm/min,表面粗糙度最小可以达到29.1 nm。
  • 图  1  微弧等离子体放电抛光装置示意图与实物图

    图  2  微弧等离子体放电抛光过程示意图

    图  3  等离子体放电通道的产生过程[12]

    图  4  微弧等离子体放电抛光304不锈钢

    图  5  MRR的均值主效应图

    图  6  Sa的均值主效应图

    图  7  304不锈钢抛光前、后实物照片、表面粗糙度、扫描电镜图以及EDS分析

    图  8  不同抛光方法的对比图[15]

    表  1  试验因素及水平

    因素水平
    12345
    电源电压U/V 200 250 300 350 400
    电解液浓度C/% 2 3 4 5 6
    电解液温度T/℃ 50 60 70 80 90
    抛光时间t/min 0.5 2 5 10 20
    注:电解液浓度即为电解液质量分数,下同。
    下载: 导出CSV

    表  2  试验数据及结果

    序号U/VC/%T/℃t/minSa/μmMRR/(μm·min−1)
    12002500.50.14310.07
    220036020.0727.57
    320047050.0604.88
    4200580100.0563.78
    5200690200.0592.90
    625026050.0434.37
    7250370100.0453.78
    8250480200.0573.03
    92505900.50.1496.72
    1025065020.0805.89
    11300270200.0392.44
    123003800.50.1296.73
    1330049020.0765.04
    1430055050.0435.88
    15300660100.0322.52
    1635028020.0752.31
    1735039050.0832.02
    18350450100.0352.69
    19350560200.0411.64
    203506700.50.1375.04
    21400290100.0850.56
    22400350200.0420.51
    234004600.50.1405.04
    2440057020.1142.10
    2540068050.1251.51
    下载: 导出CSV

    表  3  MRR的均值响应表

    水平电压U/V浓度C/%温度T/℃时间t/min
    1 5.840 3.950 5.008 6.720
    2 4.758 4.122 4.228 4.582
    3 4.522 4.136 3.648 3.732
    4 2.740 4.024 3.472 2.666
    5 1.944 3.572 3.448 2.104
    Δ 3.896 0.564 1.560 4.616
    排秩 2 4 3 1
    下载: 导出CSV

    表  4  MRR的方差分析结果

    因素自由度平方和均方和FP贡献率/%
    电压450.19912.549622.570.00038.49
    浓度41.0600.26490.480.7530.81
    温度48.8392.20973.970.0466.78
    时间465.87816.469529.620.00050.51
    误差84.4480.55603.41
    合计24100
    下载: 导出CSV

    表  5  Sa的均值响应表

    水平电压U/V浓度C/%温度T/℃时间t/min
    1 0.07800 0.07700 0.06860 0.13960
    2 0.07480 0.07420 0.06560 0.08340
    3 0.06380 0.07360 0.07900 0.07080
    4 0.07420 0.08060 0.08840 0.05060
    5 0.10120 0.08660 0.09040 0.04760
    Δ 0.03740 0.01300 0.02480 0.09200
    排秩 2 4 3 1
    下载: 导出CSV

    表  6  Sa的方差分析结果

    因素自由度平方和均方和FP贡献率/%
    电压40.0038190.0009555.240.02310.57
    浓度40.0005740.0001430.790.5651.59
    温度40.0025210.0006303.460.0646.98
    时间40.0277480.00693738.060.00076.82
    误差80.0014580.0001824.04
    合计24100
    下载: 导出CSV

    表  7  试验验证条件及结果

    U/VC/%T/℃t/minMRR/(μm·min−1)Sa/nm
    2004500.511.73
    3004602029.1
    下载: 导出CSV
  • [1] ZHANG D H, MENG X C, ZUO G Z, et al. Study of the corrosion characteristics of 304 and 316L stainless steel in the static liquid lithium[J]. Journal of Nuclear Materials, 2021, 553: 153032. doi: 10.1016/j.jnucmat.2021.153032
    [2] 马幸申, 陈建钧. 奥氏体不锈钢氢损伤表面波检测的有限元模拟[J]. 机械科学与技术, 2018, 37(3): 461-465. doi: 10.13433/j.cnki.1003-8728.2018.0321

    MA X S, CHEN J J. Finite element simulation of surface wave test for hydrogen damage of austenite stainless steel[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(3): 461-465. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2018.0321
    [3] KAO P S, HOCHENG H. Optimization of electrochemical polishing of stainless steel by grey relational analysis[J]. Journal of Materials Processing Technology, 2003, 140(1-3): 255-259. doi: 10.1016/S0924-0136(03)00747-7
    [4] ANDRADE L S, XAVIER S C, ROCHA-FILHO R C, et al. Electropolishing of AISI-304 stainless steel using an oxidizing solution originally used for electrochemical coloration[J]. Electrochimica Acta, 2005, 50(13): 2623-2627. doi: 10.1016/j.electacta.2004.11.007
    [5] LIN C C, HU C C. Electropolishing of 304 stainless steel: Surface roughness control using experimental design strategies and a summarized electropolishing model[J]. Electrochimica Acta, 2008, 53(8): 3356-3363. doi: 10.1016/j.electacta.2007.11.075
    [6] MAI T A, LIM G C. Micromelting and its effects on surface topography and properties in laser polishing of stainless steel[J]. Journal of Laser Applications, 2004, 16(4): 221-228. doi: 10.2351/1.1809637
    [7] KANG D, ZOU P, WU H, et al. Research on ultrasonic vibration-assisted laser polishing of the 304 stainless steel[J]. Journal of Manufacturing Processes, 2021, 62: 403-417. doi: 10.1016/j.jmapro.2020.12.009
    [8] LUO J F, DORNFELD D A. Material removal mechanism in chemical mechanical polishing: theory and modeling[J]. IEEE Transactions on Semiconductor Manufacturing, 2001, 14(2): 112-133. doi: 10.1109/66.920723
    [9] ZHANG Z Y, LIAO L X, WANG X Z, et al. Development of a novel chemical mechanical polishing slurry and its polishing mechanisms on a nickel alloy[J]. Applied Surface Science, 2020, 506: 144670. doi: 10.1016/j.apsusc.2019.144670
    [10] HU X K, SONG Z T, LIU W L, et al. Chemical mechanical polishing of stainless steel foil as flexible substrate[J]. Applied Surface Science, 2012, 258(15): 5798-5802. doi: 10.1016/j.apsusc.2012.02.100
    [11] DENG T T, ZHENG Z Z, LI J J, et al. Surface polishing of AISI 304 stainless steel with micro plasma beam irradiation[J]. Applied Surface Science, 2019, 476: 796-805. doi: 10.1016/j.apsusc.2019.01.173
    [12] 邵涛, 严萍. 大气压气体放电及其等离子体应用[M]. 北京: 科学出版社, 2015

    SHAO T, YAN P. Atmospheric pressure gas discharge and its plasma application[M]. Beijing: Science Press, 2015. (in Chinese)
    [13] WANG J, SUO L C, GUAN L L, et al. Analytical study on mechanism of electrolysis and plasma polishing[J]. Advanced Materials Research, 2012, 472-475: 350-353. doi: 10.4028/www.scientific.net/AMR.472-475.350
    [14] SHIMA A, TAKAYAMA K, TOMITA Y, et al. Mechanism of impact pressure generation from spark-generated bubble collapse near a wall[J]. AIAA Journal, 1983, 21(1): 55-59. doi: 10.2514/3.8027
    [15] JI G Q, SUN H W, DUAN H D, et al. Effect of electrolytic plasma polishing on microstructural evolution and tensile properties of 316L stainless steel[J]. Surface and Coatings Technology, 2021, 420: 127330. doi: 10.1016/j.surfcoat.2021.127330
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  128
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回