留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向传感器突发故障的监测模型自适应快速调整技术研究

钱政 程淑玉 夏红霞

钱政, 程淑玉, 夏红霞. 面向传感器突发故障的监测模型自适应快速调整技术研究[J]. 机械科学与技术, 2023, 42(4): 592-596. doi: 10.13433/j.cnki.1003-8728.20230102
引用本文: 钱政, 程淑玉, 夏红霞. 面向传感器突发故障的监测模型自适应快速调整技术研究[J]. 机械科学与技术, 2023, 42(4): 592-596. doi: 10.13433/j.cnki.1003-8728.20230102
QIAN Zheng, CHENG Shuyu, XIA Hongxia. Study on Adaptive Fast Adjustment of Monitoring Model for Sensor Sudden Fault[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 592-596. doi: 10.13433/j.cnki.1003-8728.20230102
Citation: QIAN Zheng, CHENG Shuyu, XIA Hongxia. Study on Adaptive Fast Adjustment of Monitoring Model for Sensor Sudden Fault[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 592-596. doi: 10.13433/j.cnki.1003-8728.20230102

面向传感器突发故障的监测模型自适应快速调整技术研究

doi: 10.13433/j.cnki.1003-8728.20230102
基金项目: 

安徽高校自然科学研究项目 KJ2021A1488

安徽省职业教育创新发展试验区建设项目 WJ-ZYPX-011

详细信息
    作者简介:

    钱政(1983-), 副教授, 硕士, 研究方向为人工智能与数据库, threean@163.com

  • 中图分类号: TP212;TH17

Study on Adaptive Fast Adjustment of Monitoring Model for Sensor Sudden Fault

  • 摘要: 针对多传感器监测场景中传感器突发故障导致监测模型失效的问题, 本文提出了一种堆叠自编码器深度学习模型的自适应快速调整方法。根据传感器故障时采集数据的分布特点自适应调整原始数据集, 采用调整后的数据集正向传播和监测误差反向传播微调模型更新模型的权重和偏置, 实现监测模型自适应快速调整。以机械加工过程中刀具磨损状态监测为例, 采用加州大学伯克利分校的BEST实验室提供的刀具数据集验证了自适应调整方法的有效性。结果表明, 该方法可解决当传感器突发故障时, 在实时监测不中断的情况下, 自适应调整后的监测模型可以准确地对刀具状态进行监测。
  • 图  1  基于模型自适应调整方法的监测方案

    图  2  自编码器和堆叠自编码器网络

    图  3  模型自适应调整方案

    图  4  自编码器训练集和测试集的混淆矩阵

    图  5  模型自适应调整时间与调整后模型准确率

    图  6  模型自适应调整时间与调整后模型准确率

    表  1  模型自适应调整时间与调整后模型准确率 %

    调整时间/s 故障传感器序号
    1 2 3 4 5 6
    0 71.58 65.75 97.43 63.70 71.23 75.17
    1 95.38 82.19 96.92 85.96 89.04 93.32
    2 96.23 85.27 97.95 88.87 92.64 92.81
    3 96.92 87.67 97.43 92.12 94.69 95.38
    4 97.43 89.38 97.60 91.44 95.72 95.89
    5 97.26 92.29 97.95 93.15 94.86 95.55
    6 97.09 93.32 98.12 94.01 95.21 95.21
    7 97.43 93.32 97.95 93.49 94.86 95.21
    8 97.26 90.58 95.89 93.66 95.21 95.72
    9 97.43 93.15 97.26 94.86 95.03 95.38
    10 97.60 92.64 97.60 94.69 95.03 95.55
    下载: 导出CSV

    表  2  模型自适应调整时间与调整后模型准确率 %

    故障传感器序号 模型自适应调整时间/s
    0 1 2 3 4 5 6 7 8 9 10
    1和2 56.51 78.08 83.73 85.62 89.04 89.73 89.90 91.10 90.92 91.44 91.10
    1和3 72.95 95.72 97.26 97.09 97.26 97.77 97.26 97.77 97.60 97.77 97.43
    1和4 47.26 80.14 86.47 88.87 89.90 91.95 91.95 91.95 93.66 93.66 93.49
    1和5 57.71 80.48 86.64 91.78 93.49 94.01 93.66 94.01 94.35 94.35 94.52
    1和6 74.49 88.87 90.92 93.15 94.52 94.52 94.52 94.69 95.38 95.55 95.72
    2和3 67.47 82.02 84.42 86.47 87.84 88.01 90.24 90.92 90.92 90.92 91.95
    2和4 53.42 79.97 79.79 80.48 78.25 83.90 86.13 85.96 85.96 86.82 89.04
    2和5 55.99 61.99 73.12 79.62 84.25 86.30 86.30 88.18 89.04 87.84 89.73
    2和6 56.16 70.38 78.42 78.94 84.76 85.10 84.25 86.47 87.16 88.53 88.87
    3和4 67.12 87.33 88.36 91.95 92.47 94.18 93.66 94.35 94.86 94.86 94.86
    3和5 70.72 87.84 92.64 94.86 96.06 95.55 95.03 96.06 96.23 96.58 96.06
    3和6 74.49 92.64 91.78 94.18 92.81 94.18 95.38 95.72 95.38 95.55 95.72
    4和5 67.47 85.45 86.30 91.10 91.61 90.41 91.44 91.10 92.64 92.29 92.12
    4和6 74.32 84.93 86.99 88.18 89.38 90.07 90.75 90.92 92.47 92.29 91.61
    5和6 63.01 74.66 80.31 82.71 84.93 86.13 85.27 87.50 87.50 88.18 88.01
    下载: 导出CSV
  • [1] CHAMOLA V, VINEET A, NAYYAR A, et al. Brain-computer interface-based humanoid control: A review[J]. Sensors, 2020, 20(13): 3620. doi: 10.3390/s20133620
    [2] 陈唯实, 黄毅峰, 卢贤锋. 多传感器融合的无人机探测技术应用综述[J]. 现代雷达, 2020, 42(6): 15-29.

    CHEN W S, HUANG Y F, LU X F. Survey on application of multi-sensor fusion in UAV detection technology[J]. Modern Radar, 2020, 42(6): 15-29. (in Chinese)
    [3] LI N P, GEBRAEEL N, LEI Y G, et al. Remaining useful life prediction based on a multi-sensor data fusion model[J]. Reliability Engineering & System Safety, 2021, 208: 107249.
    [4] CHEN G, LIU Z G, YU G, et al. A new view of multisensor data fusion: research on generalized fusion[J]. Mathematical Problems in Engineering, 2021, 2021: 5471242.
    [5] JIAO W Z, TIAN C, CHANG Q, et al. A new multi-sensor integrated index for drought monitoring[J]. Agricultural and Forest Meteorology, 2019, 268: 74-85. doi: 10.1016/j.agrformet.2019.01.008
    [6] QU Y H, YANG M H, ZHANG J Q, et al. An outline of multi-sensor fusion methods for mobile agents indoor navigation[J]. Sensors, 2021, 21(5): 1605. doi: 10.3390/s21051605
    [7] 马伟宁. 基于多传感器信息技术的变电站热故障监测方法[D]. 唐山: 华北理工大学, 2017.

    MA W N. Thermal fault monitoring method for substation based on multi-sensors information technology[D]. Tangshan: North China University of Science and Technology, 2017. (in Chinese)
    [8] KUMAR M, GARG D P, ZACHERY R A. A generalized approach for inconsistency detection in data fusion from multiple sensors[C]//2006 American Control Conference. Minneapolis, MN, USA: IEEE, 2006: 6.
    [9] 乔宁国. 基于多传感器数据融合的高速列车传动系统故障诊断与健康状态预测[D]. 长春: 吉林大学, 2019.

    QIAO N G. Fault diagnosis and health prediction of high-speed train transmission system based on multi-sensor fusion[D]. Changchun: Jilin University, 2019. (in Chinese)
    [10] 刘思辰, 杨飞然, 杨军. 基于多传感器融合的刀具剩余寿命预测[J]. 振动与冲击, 2021, 40(17): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202117007.htm

    LIU S C, YANG F R, YANG J. Tool residual life prediction based on multi-sensor fusion[J]. Journal of Vibration and Shock, 2021, 40(17): 47-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202117007.htm
    [11] QIAO H H, WANG T Y, WANG P, et al. A time- distributed spatiotemporal feature learning method for machine health monitoring with multi-sensor time series[J]. Sensors, 2018, 18(9): 2932. doi: 10.3390/s18092932
    [12] YAO X M, LI S B, YAO Y, et al. Health monitoring and diagnosis of equipment based on multi-sensor fusion[J]. International Journal of Online and Biomedical Engineering, 2018, 14(4): 4-19.
    [13] SAMARAS S, DIAMANTIDOU E, ATALOGLOU D, et al. Deep learning on multi sensor data for counter UAV applications-A systematic review[J]. Sensors, 2019, 19(22): 4837. doi: 10.3390/s19224837
    [14] 李宏坤, 郝佰田, 代月帮, 等. 基于压缩感知和加噪堆栈稀疏自编码器的铣刀磨损程度识别方法研究[J]. 机械工程学报, 2019, 55(14): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201914001.htm

    LI H K, HAO B T, DAI Y B, et al. Wear status recognition for milling cutter based on compressed sensing and noise stacking sparse auto-encoder[J]. Journal of Mechanical Engineering, 2019, 55(14): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201914001.htm
    [15] 来杰, 王晓丹, 向前, 等. 自编码器及其应用综述[J]. 通信学报, 2021, 42(9): 218-230.

    LAI J, WANG X D, XIANG Q, et al. Review on autoencoder and its application[J]. Journal on Communications, 2021, 42(9): 218-230. (in Chinese)
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  11
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回