留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

汽车摆振系统Hopf分岔及参数灵敏度分析

王娜 毛忠民 任翠锋 高大威

王娜, 毛忠民, 任翠锋, 高大威. 汽车摆振系统Hopf分岔及参数灵敏度分析[J]. 机械科学与技术, 2023, 42(4): 559-565. doi: 10.13433/j.cnki.1003-8728.20230089
引用本文: 王娜, 毛忠民, 任翠锋, 高大威. 汽车摆振系统Hopf分岔及参数灵敏度分析[J]. 机械科学与技术, 2023, 42(4): 559-565. doi: 10.13433/j.cnki.1003-8728.20230089
WANG Na, MAO Zhongmin, REN Cuifeng, GAO Dawei. Hopf Bifurcation and Sensitivity Analysis of Vehicle Shimmy System[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 559-565. doi: 10.13433/j.cnki.1003-8728.20230089
Citation: WANG Na, MAO Zhongmin, REN Cuifeng, GAO Dawei. Hopf Bifurcation and Sensitivity Analysis of Vehicle Shimmy System[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 559-565. doi: 10.13433/j.cnki.1003-8728.20230089

汽车摆振系统Hopf分岔及参数灵敏度分析

doi: 10.13433/j.cnki.1003-8728.20230089
基金项目: 

国家自然科学基金项目 11672254

安徽省高校优秀拔尖人才培育项目 gxgnfx2020123

安徽省教育厅自然科学重点项目 2022AH051986

详细信息
    作者简介:

    王娜(1981-), 副教授, 硕士, 研究方向为汽车动力学,113107541@qq.com

  • 中图分类号: TG156

Hopf Bifurcation and Sensitivity Analysis of Vehicle Shimmy System

  • 摘要: 为了分析汽车摆振系统的失稳机制,以某样车的右前轮为例,基于1/4车辆动力学模型,通过第二类拉格朗日方程建立了三自由度单轮摆振系统动力学模型。在系统状态方程的基础上,应用Hurwitz准则求解得到了摆振系统的临界失稳车速,进而获得了摆振系统在临界失稳车速处的特征值。结果表明,临界车速工况下的系统平衡点是非双曲平衡点,因此,以车速为分岔参数,通过中心流形理论得到了系统在临界车速处的二维中心流形。在此基础上深入分析了摆振系统的Hopf分岔特性,并得到了摆振系统的近似周期解。最后,通过四水平五参数正交实验设计,获得了转向系和悬架系的结构参数对系统临界失稳车速的灵敏度。研究发现,系统临界失稳车速对主销后倾角最为敏感,其次是转向系和悬架系的阻尼。因此,在工程实践中,应该优先考虑通过调整主销后倾角来抑制汽车摆振。
  • 图  1  汽车摆振系统动力学模型

    图  2  摆振系统的分岔特性

    图  3  摆振幅值与轮胎垂向载荷最值随车速的变化

    图  4  两种方法求得的摆角相图(v=14.70 m/s)

    图  5  各因素主效应图

    表  1  某样车结构参数

    参数 数值
    车轮围绕主销的转动惯量J 6.00 kg·m2
    车轮绕其旋转轴的转动惯量Jy 3.95 kg·m2
    非簧载质量m1 38.00 kg
    簧载质量m2 452.50 kg
    转向系统等效角阻尼cv 45.00 Nm·s/rad
    悬架阻尼c 2.30 kN·s/m
    转向系统等效角刚度kv 14.80 kN·m/rad
    轮胎的垂向刚度kt 260.00 kN/m
    悬架刚度k 31.60 kN/m
    轮胎滚动半径量R 0.36 m
    轮胎拖距n 0.05 m
    从车轮中心到主销的横向距离A 0.068 m
    车轮中心到下控制臂和副车架铰链中心距离B 0.48 m
    轮胎的松弛长度σ 0.65 m
    接地印迹长度a 0.20 m
    后倾角τ 0.083 rad
    轮胎公式拟合参数c1 -30.30 kN/rad
    轮胎公式拟合参数c2 -7.96 rad
    轮胎公式拟合参数c3 3.25×103 kN/rad
    轮胎垂向静载荷Fz0 4.70 kN
    下载: 导出CSV

    表  2  临界车速的求解

    i vi/(m·s-1)
    1 14.187 6
    2 20.483 3
    3 -5.681 0×1018
    4 6.626 5×1017
    5 -432.362 1+325.213 1i
    6 -432.362 1-325.213 1i
    7 -10.188 5+37.595 3i
    8 -10.188 5-37.595 3i
    9 -5.876 0+38.079 1i
    10 -5.876 0-38.079 1i
    11 -0.823 6+3.267 5i
    12 -0.823 6-3.267 5i
    13 496.886 3-334.240 4i
    14 496.886 3+334.240 4i
    下载: 导出CSV

    表  3  摆振系统的特征值

    特征值λi v1=14.187 6 m/s v2=20.483 3 m/s
    1 -30.132 1+84.102 7i -29.628 4+87.661 8i
    2 -30.132 1-84.102 7i -29.628 4-87.661 8i
    3 -30.521 8 -41.216 4
    4 -2.075 1+7.749 7i -2.074 4+7.749 9i
    5 -2.075 1-7.749 7i -2.074 4-7.749 9i
    6 +47.330 4i +47.248 8i
    7 -47.330 4i -47.248 8i
    下载: 导出CSV

    表  4  不同速度下的摆振幅值

    车辆速度/(m·s-1) 数值结果/rad 解析结果/rad
    13.70 5.863 5×10-6 2.794 8×10-6
    14.20 9.196 9×10-4 1.935 3×10-4
    14.70 0.027 84 0.027 87
    20.00 0.015 93 0.011 82
    20.50 6.833 7×10-4 1.506 0×10-4
    21.00 1.150 2×10-5 3.826 3×10-6
    下载: 导出CSV

    表  5  各因素的水平表

    水平 因素
    kv/(kN·m·rad-1) k/(kN·m-1) cv/(Nm·s·rad-1) c/(N·s·m-1) τ/rad
    1 13 320 28 440 40.50 2 070 0.075
    2 14 060 30 020 42.75 2 185 0.079
    3 14 800 31 600 45 2 300 0.083
    4 15 540 33 180 47.25 2 415 0.087
    下载: 导出CSV

    表  6  正交实验的安排和结果

    编号 因素水平 Δv/ (m·s-1)
    kv k cv c τ
    1 1 1 1 1 1 19.182 5
    2 1 2 2 2 2 17.315 9
    3 1 3 3 3 3 15.477 6
    4 1 4 4 4 4 13.628 7
    5 2 1 2 3 4 15.093 4
    6 2 2 1 4 3 15.442 4
    7 2 3 4 1 2 9.301 1
    8 2 4 3 2 1 9.841 6
    9 3 1 3 4 2 0.000 0
    10 3 2 4 3 1 0.000 0
    11 3 3 1 2 4 15.322 6
    12 3 4 2 1 3 12.893 0
    13 4 1 4 2 3 0.000 0
    14 4 2 3 1 4 4.463 1
    15 4 3 2 4 1 0.000 0
    16 4 4 1 3 2 7.004 7
    下载: 导出CSV

    表  7  各因素的灵敏度

    因素 kv k cv c τ
    灵敏度 0.006 056 0.000 487 7 1.261 8 0.011 99 390.915 7
    下载: 导出CSV
  • [1] 张宁, 殷国栋, 陈南, 等. 车辆动力学中的摆振问题研究现状综述[J]. 机械工程学报, 2017, 53(14): 16-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201714002.htm

    ZHANG N, YIN G D, CHEN N, et al. A state-of-the-art survey on shimmy problem in vehicle dynamics[J]. Journal of Mechanical Engineering, 2017, 53(14): 16-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201714002.htm
    [2] BUCCHI F, CERU F, FRENDO F. Stability analysis of a novel four-wheeled motorcycle in straight running[J]. Meccanica, 2017, 52(11): 2603-2613.
    [3] 谢帅, 舒成辉, 贾天娇, 等. 起落架摆振多体动力学建模及其在摆振飞行试验中的应用[J]. 机械科学与技术, 2018, 37(1): 148-151. doi: 10.13433/j.cnki.1003-8728.2018.0122

    XIE S, SHU C H, JIA T J, et al. Multi-body dynamics modeling of landing gear shimmy and application in shimmy flight test based on model[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(1): 148-151. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2018.0122
    [4] TOMIATI N, COLOMBO A, MAGNANI G. A nonlinear model of bicycle shimmy[J]. Vehicle System Dynamics, 2019, 57(3): 315-335. doi: 10.1080/00423114.2018.1465574
    [5] RAN S H, BESSELINK I J M, NIJMEIJER H. Energy analysis of the von schlippe tyre model with application to shimmy[J]. Vehicle System Dynamics, 2015, 53(12): 1795-1810. doi: 10.1080/00423114.2015.1093151
    [6] BEREGI S, TAKACS D, STEPAN G. Bifurcation analysis of wheel shimmy with non-smooth effects and time delay in the tyre-ground contact[J]. Nonlinear Dynamics, 2019, 98(1): 841-858. doi: 10.1007/s11071-019-05123-1
    [7] MI T, STEPAN G, TAKACS D, et al. Shimmy model for electric vehicle with independent suspensions[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 232(3): 330-340. doi: 10.1177/0954407017701282
    [8] ZHURAVLEV V P, KLIMOV D M, POTNIKOV P K. A new model of shimmy[J]. Mechanics of Solids, 2013, 48(5): 490-499. doi: 10.3103/S0025654413050026
    [9] LU J W, JIANG J Z, LI J H, et al. Analysis of dynamic mechanism and global response of vehicle shimmy system with multi-clearance joints[J]. Journal of Vibration and Control, 2018, 24(11): 2312-2326. doi: 10.1177/1077546316685681
    [10] 王威, 陈军, 宋玉玲. 含双间隙模型轿车转向系非线性动力学特性研究[J]. 农业机械学报, 2013, 44(10): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201310007.htm

    WANG W, CHEN J, SONG Y L. Nonlinear dynamic characteristics of car's steering system with double clearance models[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 41-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201310007.htm
    [11] LI S, LIN Y. Study on the bifurcation character of steering wheel self-excited shimmy of motor vehicle[J]. Vehicle System Dynamics, 2006, 44(S1): 115-128.
    [12] 张琪昌, 李小涛, 田瑞兰. 汽车转向轮摆振的稳定性及分岔行为分析[J]. 振动与冲击, 2018, 27(1): 84-88+184. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200801019.htm

    ZHANG Q C, LI X T, TIAN R L. Study on stability and bifurcation behavior of a car turning wheel shimmy[J]. Journal of Vibration and Shock, 2018, 27(1): 84-88+184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200801019.htm
    [13] 刘献栋, 张紫广, 何田, 等. 基于增量谐波平衡法的汽车转向轮非线性摆振的研究[J]. 汽车工程, 2011, 33(2): 142-147. doi: 10.19562/j.chinasae.qcgc.2011.02.011

    LIU X D, ZHANG Z G, HE T, et al. A research on the nonlinear shimmy of automotive steering wheels based on incremental harmonic balance method[J]. Automotive Engineering, 2011, 33(2): 142-147. (in Chinese) doi: 10.19562/j.chinasae.qcgc.2011.02.011
    [14] 肖闯, 殷智宏. 单转向轮摆振非线性动力学研究[J]. 中国机械工程, 2013, 24(8): 1131-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201308031.htm

    XIAO C, YIN Z H. Research on nonlinear dynamics of caster wheel shimmy[J]. China Mechanical Engineering, 2013, 24(8): 1131-1135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201308031.htm
    [15] WEI D G, ZHU Y J, JIANG T, et al. Multiple limit cycles shimmy of the dual-front axle steering heavy truck based on bisectional road[J]. Journal of Computational and Nonlinear Dynamics, 2019, 14(5): 051005. doi: 10.1115/1.4042294
    [16] GAO L L, MA F, JIN C, et al. Shimmy characteristic analysis for steering system of heavy mining dump trucks[J]. Journal of Vibration and Acoustics, 2020, 142(2): 024501. doi: 10.1115/1.4045918
    [17] WEI H, LU J W, LU H Y, et al. Hopf bifurcation and energy transfer of automobile shimmy system with consideration of road roughness excitation[J]. Vehicle System Dynamics, 2022, 60(2): 454-469. doi: 10.1080/00423114.2020.1821903
    [18] PACEJKA H B. Tire and vehicle dynamics[M]. Oxford: Butterworth and Heinemann, 2006.
    [19] DING W J. Self-excited vibration: theory, paradigms, and research methods[M]. Beijing: Tsinghua University Press, 2011.
    [20] 刘文卿. 实验设计[M]. 北京: 清华大学出版社, 2020.

    LIU W Q. Design of experiments[M]. Beijing: Tsinghua University Press, 2020. (in Chinese)
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  31
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-19
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回