留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硬质聚氨酯泡沫材料制备与成型工艺的研究进展

刘磊 郭琰 段飞 赵丹阳

刘磊,郭琰,段飞, 等. 硬质聚氨酯泡沫材料制备与成型工艺的研究进展[J]. 机械科学与技术,2023,42(2):267-281 doi: 10.13433/j.cnki.1003-8728.20230074
引用本文: 刘磊,郭琰,段飞, 等. 硬质聚氨酯泡沫材料制备与成型工艺的研究进展[J]. 机械科学与技术,2023,42(2):267-281 doi: 10.13433/j.cnki.1003-8728.20230074
LIU Lei, GUO Yan, DUAN Fei, ZHAO Danyang. Advances in Fabrication and Moulding Process of Rigid Polyurethane Foam Materials[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 267-281. doi: 10.13433/j.cnki.1003-8728.20230074
Citation: LIU Lei, GUO Yan, DUAN Fei, ZHAO Danyang. Advances in Fabrication and Moulding Process of Rigid Polyurethane Foam Materials[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(2): 267-281. doi: 10.13433/j.cnki.1003-8728.20230074

硬质聚氨酯泡沫材料制备与成型工艺的研究进展

doi: 10.13433/j.cnki.1003-8728.20230074
详细信息
    作者简介:

    刘磊(1970−),高级工程师,硕士,研究方向为无人机及其发射回收装置设计与研究,liulei@nwpu.edu.cn

  • 中图分类号: TQ328.3

Advances in Fabrication and Moulding Process of Rigid Polyurethane Foam Materials

  • 摘要: 硬质聚氨酯泡沫材料凭借其优秀的理化性能和机械性能,广泛应用于国民生产和国防军工等多个领域,具有不可替代的重要作用。同时,随着材料成型技术的进步,又发展出一些性能增强的新型硬质聚氨酯复合材料。本文综述了硬质聚氨酯泡沫材料的原料体系、成型工艺及阻燃聚氨酯泡沫、材料增强方法的最近研究进展,详细分析了异氰酸酯、多元醇和多种纤维和粒子增强材料对硬质聚氨酯泡沫性能的增强机理及影响规律。最后,对硬质聚氨酯泡沫材料的未来研究和发展方向进行了展望。
  • 图  1  水发泡过程异氰酸酯参与的主要反应

    图  2  硬质聚氨酯泡沫浇注成型与喷涂成型示意图

    图中A料为多元醇及助剂混合体系,又称为白料;B料为多异氰酸酯,又称为黑料

    图  3  RIM[1]、RRIM、SRIM工艺的工艺流程示意图

    图  4  不同GF质量分数下RPUF/GF复合材料SEM成像[36]

    图  5  预处理前后碳纤维在聚氨酯基体中的SEM成像预处理后的CF表面有凹槽,与基体结合更紧密[43]

    图  6  用于强化聚氨酯硬泡的异形碳纤维

    图  7  纯RPUF与CNT/RPUF复合材料SEM成像图[70]

    表  1  RIM、RRIM、SRIM工艺比较[21]

    比较项目RIMRRIMSRIM
    增强材料类型 粉末状 网状、纤维状
    增强材料加入方式 预先混入原料 摆放于模腔中
    是否需要计量泵 需要 不需要 需要
    充压气缸 需要 需要 需要
    注射位置 侧面 侧面 模具中心
    原料黏度/(mPa·s) 约2 000 100 ~ 10 000 <500
    下载: 导出CSV
  • [1] 朱吕民, 刘益军. 聚氨酯泡沫塑料[M]. 3版. 北京: 化学工业出版社, 2005

    ZHU L M, LIU Y J. Polyurethane foam[M]. 3rd ed. Beijing: Chemical Industry Press, 2005 (in Chinese)
    [2] GAMA N V, FERREIRA A, BARROS-TIMMONS A. Polyurethane foams: past, present, and future[J]. Materials, 2018, 11(10): 1841 doi: 10.3390/ma11101841
    [3] 胡时胜, 刘剑飞, 冯建平. 硬质聚氨酯泡沫塑料动态力学性能的研究[J]. 爆炸与冲击, 1996, 16(4): 373-376

    HU S S, LIU J F, FENG J P. Study of the dynamic mechanical behaviour of rigid polyurethane foam[J]. Explosion and Shock Waves, 1996, 16(4): 373-376 (in Chinese)
    [4] 张丽丽, 周青, 陈博, 等. 聚合MDI的多环结构对聚氨酯泡沫性能的影响[J]. 化学推进剂与高分子材料, 2016, 14(6): 72-77 doi: 10.16572/j.issn1672-2191.201606013

    ZHANG L L, ZHOU Q, CHEN B, et al. Influence of polymeric MDI polycyclic structure on performance of polyurethane foam[J]. Chemical Propellants & Polymeric Materials, 2016, 14(6): 72-77 (in Chinese) doi: 10.16572/j.issn1672-2191.201606013
    [5] 于向伟, 孙浩, 魏健, 等. 异氰酸根含量对聚氨酯多孔材料性能的影响[J]. 热固性树脂, 2019, 34(4): 45-48

    YU X W, SUN H, WEI J, et al. Effect of isocyanate content on the properties of polyurethane porous materials[J]. Thermosetting Resin, 2019, 34(4): 45-48 (in Chinese)
    [6] 刘长伟, 史颖, 马驰, 等. 异氰酸酯硬段对聚氨酯结构及性能的影响[J]. 高分子材料科学与工程, 2021, 37(3): 79-84

    LIU C W, SHI Y, MA C, et al. Effect of isocyanate hard segment on structure and property of polyurethane[J]. Polymer Materials Science and Engineering, 2021, 37(3): 79-84 (in Chinese)
    [7] KHATOON H, IQBAL S, IRFAN M, et al. A review on the production, properties and applications of non-isocyanate polyurethane: a greener perspective[J]. Progress in Organic Coatings, 2021, 154: 106124 doi: 10.1016/j.porgcoat.2020.106124
    [8] XI X D, PIZZI A, GERARDIN C, et al. Glucose-biobased non-isocyanate polyurethane rigid foams[J]. Journal of Renewable Materials, 2019, 7(3): 301-312 doi: 10.32604/jrm.2019.04174
    [9] 王永峰, 周正权, 刘贺, 等. 多元醇种类和用量对聚酯型聚氨酯泡沫的影响[J]. 合成材料老化与应用, 2019, 48(2): 43-46 doi: 10.16584/j.cnki.issn1671-5381.2019.02.010

    WANG Y F, ZHOU Z Q, LIU H, et al. Effect of polyol's type and dosage on polyester polyurethane foam[J]. Synthetic Materials Aging and Application, 2019, 48(2): 43-46 (in Chinese) doi: 10.16584/j.cnki.issn1671-5381.2019.02.010
    [10] ANICETO J P S, PORTUGAL I, SILVA C M. Biomass-based polyols through oxypropylation reaction[J]. ChemSusChem, 2012, 5(8): 1358-1368 doi: 10.1002/cssc.201200032
    [11] NIU M, ZHAO G J, ALMA M H. Polycondensation reaction and its mechanism during lignocellulosic liquefaction by an acid catalyst: a review[J]. Forestry Studies in China, 2011, 13(1): 71-79 doi: 10.1007/s11632-011-0109-7
    [12] GAMA N V, SILVA R, COSTA M, et al. Statistical evaluation of the effect of formulation on the properties of crude glycerol polyurethane foams[J]. Polymer Testing, 2016, 56: 200-206 doi: 10.1016/j.polymertesting.2016.10.006
    [13] 刘贺, 张晓青, 马凤国. 发泡剂和扩链剂/交联剂对聚酯型聚氨酯泡沫的影响[J]. 合成材料老化与应用, 2019, 48(1): 25-28 doi: 10.16584/j.cnki.issn1671-5381.2019.01.007

    LIU H, ZHANG X Q, MA F G. Effect of foaming agent and chain extender/cross linker agent on polyester polyurethane foam[J]. Synthetic Materials Aging and Application, 2019, 48(1): 25-28 (in Chinese) doi: 10.16584/j.cnki.issn1671-5381.2019.01.007
    [14] 吕小健, 于向伟, 史中行, 等. 硬段含量对聚氨酯泡沫材料性能的影响[J]. 热固性树脂, 2020, 35(5): 46-50

    LYU X J, YU X W, SHI Z X, et al. Effect of hard segment content on the properties of polyurethane foam[J]. Thermosetting Resin, 2020, 35(5): 46-50 (in Chinese)
    [15] 吴振飞, 张杰. MF/FEA-1100混合发泡剂对聚氨酯泡沫泡孔结构和性能的影响[J]. 聚氨酯工业, 2016, 31(5): 26-29 doi: 10.3969/j.issn.1005-1902.2016.05.007

    WU Z F, ZHANG J. The influence of MF/FEA-1100 on rigid polyurethane foam cell structure and properties[J]. Polyurethane Industry, 2016, 31(5): 26-29 (in Chinese) doi: 10.3969/j.issn.1005-1902.2016.05.007
    [16] 徐祥, 沈照羽, 崔胜凯, 等. 发泡剂对硬质聚氨酯泡沫性能的影响[J]. 热固性树脂, 2021, 36(2): 31-33

    XU X, SHEN Z Y, CUI S K, et al. Effect of foaming agent on the properties of rigid polyurethane foam[J]. Thermosetting Resin, 2021, 36(2): 31-33 (in Chinese)
    [17] 袁帅, 谢兴益. 环境友好的二氧化碳系聚氨酯硬泡发泡技术浅谈[J]. 聚氨酯工业, 2019, 34(6): 40-42 doi: 10.3969/j.issn.1005-1902.2019.06.012

    YUAN S, XIE X Y. Brief review on several environment-benign CO2 foaming technologies for rigid polyurethane foam[J]. Polyurethane Industry, 2019, 34(6): 40-42 (in Chinese) doi: 10.3969/j.issn.1005-1902.2019.06.012
    [18] 芮敬功, 邢益辉, 姚志洪. 改善硬质聚氨酯发泡塑料填充性能的方法: 中国, CN101474842A[P]. 2009-07-08.

    RUI J G, XING Y H, YAO Z H. Method for improving the filling performance of rigid polyurethane foamed plastics Chinese: CN, CN101474842A[P]. 2009-07-08 (in Chinese)
    [19] 佚名. 一种高分子材料聚氨酯自动化生产浇注装置: 中国, CN112810005A[P]. 2021-05-18

    UNKNOWN. A kind of polyurethane automatic production pouring device: CN, CN112810005A[P]. 2021-05-18 (in Chinese)
    [20] HOPMANN C, WAGNER R, FISCHER K, et al. One step production of high-performance sandwich components[J]. Cellular Polymers, 2017, 36(3): 135-150 doi: 10.1177/026248931703600302
    [21] 唐红艳. SRIM工艺与制品性能研究[D]. 武汉: 武汉理工大学, 2007

    TANG H Y. Research on SRIM process and properties of the parts prepared by SRIM process[D]. Wuhan: Wuhan University of Technology, 2007 (in Chinese)
    [22] 李俊贤. 反应注射成型技术及材料(连载一)[J]. 聚氨酯工业, 1995(4): 40-45 + 51

    LI J X. Reaction injection molding technology and materials (Serial I)[J]. Polyurethane Industry, 1995(4): 40-45 + 51 (in Chinese)
    [23] 陈丰. 可变长纤维增强反应注射成型技术及其制品质量控制研究[D]. 南京: 南京理工大学, 2012.

    CHEN F. Study on variable long fiber reinforced reaction injection molding technology and products quality control[D]. Nanjing: Nanjing University of Science and Technology, 2012 (in Chinese)
    [24] GOMES N M O, FONTE C P, SOUSA C C E, et al. Real time control of mixing in reaction injection moulding[J]. Chemical Engineering Research and Design, 2016, 105: 31-43 doi: 10.1016/j.cherd.2015.10.042
    [25] LÖHNER M, DRUMMER D. Influence of processing parameters in reaction injection foam molding for multi-layer parts on foam structure and mechanical properties[J]. Applied Mechanics and Materials, 2015, 805: 131-138 doi: 10.4028/www.scientific.net/AMM.805.131
    [26] TRÖLTZSCH J, SCHÄFER K, NIEDZIELA D, et al. Simulation of RIM-process for polyurethane foam expansion in fiber reinforced sandwich structures[J]. Procedia CIRP, 2017, 66: 62-67 doi: 10.1016/j.procir.2017.03.285
    [27] SCHÄFER K, NESTLER D, JAHN K, et al. Numerical simulation with experimental validation of the structural reaction injection moulding of 3D continuous fibre reinforced polyurethane foam[J]. Engineering Research Express, 2021, 3(2): 025027 doi: 10.1088/2631-8695/abfd49
    [28] 许黛芳, 俞科静, 钱坤. 阻燃聚氨酯硬泡阻燃剂的研究进展[J]. 宇航材料工艺, 2018, 48(3): 6-11 doi: 10.12044/j.issn.1007-2330.2018.03.002

    XU D F, YU K J, QIAN K. Development of flame retardants in rigid polyurethane foam[J]. Aerospace Materials & Technology, 2018, 48(3): 6-11 (in Chinese) doi: 10.12044/j.issn.1007-2330.2018.03.002
    [29] 乐亮, 刘运学, 范兆荣, 等. 硬质聚氨酯泡沫塑料阻燃技术研究进展[J]. 合成树脂及塑料, 2021, 38(4): 64-70 + 75 doi: 10.19825/j.issn.1002-1396.2021.04.15

    LE L, LIU Y X, FAN Z R, et al. Research progress in flame retardant technology for RPUF[J]. China Synthetic Resin and Plastics, 2021, 38(4): 64-70 + 75 (in Chinese) doi: 10.19825/j.issn.1002-1396.2021.04.15
    [30] 张继, 边金彩, 何珍妮, 等. 低聚羟丙基磷酸乙酯阻燃剂的合成及应用[J]. 精细化工, 2021, 38(9): 1913-1919 + 1927 doi: 10.13550/j.jxhg.20210277

    ZHANG J, BIAN J C, HE Z N, et al. Synthesis and application of oligohydroxypropyl ethyl phosphate flame retardant[J]. Fine Chemicals, 2021, 38(9): 1913-1919 + 1927 (in Chinese) doi: 10.13550/j.jxhg.20210277
    [31] 刘秀玉, 张冰, 张浩, 等. 基于TG-FTIR与XPS的硬质聚氨酯泡沫/膨胀石墨复合材料阻燃机理研究[J]. 光谱学与光谱分析, 2020, 40(5): 1626-1633

    LIU X Y, ZHANG B, ZHANG H, et al. Research of flame retardant mechanism for RPUF/EG composites based on TG-FTIR and XPS[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1626-1633 (in Chinese)
    [32] 刘琳, 王晓俊. 含阻燃特性原子多元醇对硬质聚氨酯性能的影响[J]. 建筑材料学报, 2021, 24(5): 1011-1017 doi: 10.3969/j.issn.1007-9629.2021.05.015

    LIU L, WANG X J. Influence of flame-retardant atom-containing polyols on properties of rigid polyurethane[J]. Journal of Building Materials, 2021, 24(5): 1011-1017 (in Chinese) doi: 10.3969/j.issn.1007-9629.2021.05.015
    [33] HAMIDOV M, ÇAKMAKÇI E, KAHRAMAN M V. Autocatalytic reactive flame retardants for rigid polyurethane foams[J]. Materials Chemistry and Physics, 2021, 267: 124636 doi: 10.1016/j.matchemphys.2021.124636
    [34] ÇALIŞKAN E, ÇANAK T C, KARAHASANOĞLU M, et al. Synthesis and characterization of phosphorus-based flame retardant containing rigid polyurethane foam[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(6): 4119-4129 doi: 10.1007/s10973-021-10837-9
    [35] 江赛华, 黄裕斌, 游文杰. RPUF用rGO/SiO2气凝胶阻燃涂层制备及性能研究[J]. 中国安全科学学报, 2020, 30(9): 142-148

    JIANG S H, HUANG Y B, YOU W J. Preparation and property study of rGO/SiO2 aerogel flame-retardant coating for RPUF[J]. China Safety Science Journal, 2020, 30(9): 142-148 (in Chinese)
    [36] 罗霞, 俞科静, 王梦蕾, 等. 玻璃纤维增强聚氨酯泡沫的性能研究[J]. 化工新型材料, 2017, 45(7): 90-92

    LUO X, YU K J, WANG M L, et al. Research of glass fiber reinforced polyurethane foam performance[J]. New Chemical Materials, 2017, 45(7): 90-92 (in Chinese)
    [37] KIM S H, PARK H C, JEONG H M, et al. Glass fiber reinforced rigid polyurethane foams[J]. Journal of Materials Science, 2010, 45(10): 2675-2680 doi: 10.1007/s10853-010-4248-3
    [38] LEE C S, KIM M S, PARK S B, et al. A temperature- and strain-rate-dependent isotropic elasto-viscoplastic model for glass-fiber-reinforced polyurethane foam[J]. Materials & Design, 2015, 84: 163-172
    [39] KIM M S, KIM J D, KIM J H, et al. Mechanical performance degradation of glass fiber-reinforced polyurethane foam subjected to repetitive low-energy impact[J]. International Journal of Mechanical Sciences, 2021, 194: 106188 doi: 10.1016/j.ijmecsci.2020.106188
    [40] 贺福. 碳纤维及其应用技术[M]. 北京: 化学工业出版社, 2004

    HE F. Carbon fiber and its application technology[M]. Beijing: Chemical Industry Press, 2004 (in Chinese)
    [41] 王云英, 孟江燕, 陈学斌, 等. 复合材料用碳纤维的表面处理[J]. 表面技术, 2007, 36(3): 53-57 + 60 doi: 10.3969/j.issn.1001-3660.2007.03.019

    WANG Y Y, MENG J Y, CHEN X B, et al. Surface treatment of carbon fiber for composites[J]. Surface Technology, 2007, 36(3): 53-57 + 60 (in Chinese) doi: 10.3969/j.issn.1001-3660.2007.03.019
    [42] KIM S H, NOH Y J, KO Y W, et al. Improved tensile strength and thermal stability of thermoplastic carbon fiber fabric composites by heat induced crystallization of in situ polymerizable cyclic butylene terephthalate oligomers[J]. Polymer Engineering & Science, 2014, 54(9): 2161-2169
    [43] MA R L, LI W W, HUANG M M, et al. Enhancing strength and toughness of carbon fibers reinforced rigid polyurethane composites with low fiber content[J]. Polymer Testing, 2018, 71: 156-162 doi: 10.1016/j.polymertesting.2018.08.030
    [44] ZHENG H, ZHANG W J, LI B W, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: a review[J]. Composites Part B:Engineering, 2022, 233: 109639 doi: 10.1016/j.compositesb.2022.109639
    [45] 陈丰, 张华, 夏显明, 等. 长纤维增强反应注射成型PUR/CF复合材料力学性能研究[J]. 工程塑料应用, 2013, 41(12): 18-22 doi: 10.3969/j.issn.1001-3539.2013.12.004

    CHEN F, ZHANG H, XIA X M, et al. Study on mechanical properties of long fiber reinforced reaction injection molded polyurethane/carbon fiber composites[J]. Engineering Plastics Application, 2013, 41(12): 18-22 (in Chinese) doi: 10.3969/j.issn.1001-3539.2013.12.004
    [46] HUANG M M, LI W W, LIU X J, et al. The effects of cauliflower-like short carbon fibers on the mechanical properties of rigid polyurethane matrix composites[J]. Polymer Testing, 2020, 89: 106718 doi: 10.1016/j.polymertesting.2020.106718
    [47] MA R L, LI W W, HUANG M M, et al. The reinforcing effects of dendritic short carbon fibers for rigid polyurethane composites[J]. Composites Science and Technology, 2019, 170: 128-134 doi: 10.1016/j.compscitech.2018.11.047
    [48] SANTIAGO-CALVO M, TIRADO-MEDIAVILLA J, RAUHE J C, et al. Evaluation of the thermal conductivity and mechanical properties of water blown polyurethane rigid foams reinforced with carbon nanofibers[J]. European Polymer Journal, 2018, 108: 98-106 doi: 10.1016/j.eurpolymj.2018.08.051
    [49] ZAGHLOUL M Y M, ZAGHLOUL M M Y, ZAGHLOUL M M Y. Developments in polyester composite materials – An in-depth review on natural fibres and nano fillers[J]. Composite Structures, 2021, 278: 114698 doi: 10.1016/j.compstruct.2021.114698
    [50] 陶毓博, 李鹏. 植物纤维填充聚氨酯泡沫复合材料的研究进展[J]. 材料导报, 2015, 29(1): 76-80 doi: 10.11896/j.issn.1005-023X.2015.01.013

    TAO Y B, LI P. Plant fibers filled polyurethane foam composites: a review[J]. Materials Reports, 2015, 29(1): 76-80 (in Chinese) doi: 10.11896/j.issn.1005-023X.2015.01.013
    [51] CZŁONKA S, STRĄKOWSKA A, KREMENSAS A, et al. Nutmeg filler as a natural compound for the production of polyurethane composite foams with antibacterial and anti-aging properties[J]. Polymer Testing, 2020, 86: 106479 doi: 10.1016/j.polymertesting.2020.106479
    [52] GU R J, SAIN M M, KONAR S K. A feasibility study of polyurethane composite foam with added hardwood pulp[J]. Industrial Crops and Products, 2013, 42: 273-279 doi: 10.1016/j.indcrop.2012.06.006
    [53] SILVA M C, TAKAHASHI J A, CHAUSSY D, et al. Composites of rigid polyurethane foam and cellulose fiber residue[J]. Journal of Applied Polymer Science, 2010, 117(6): 3665-3672
    [54] SAIR S, OUSHABI A, KAMMOUNI A, et al. Mechanical and thermal conductivity properties of hemp fiber reinforced polyurethane composites[J]. Case Studies in Construction Materials, 2018, 8: 203-212 doi: 10.1016/j.cscm.2018.02.001
    [55] 张通, 白富栋, 李政, 等. 酶解玉米秸秆残渣制备聚氨酯硬质泡沫[J]. 精细化工, 2018, 35(9): 1491-1495 doi: 10.13550/j.jxhg.20170643

    ZHANG T, BAI F D, LI Z, et al. Preparation of polyurethane rigid foams using fermentation residue of corn stalk[J]. Fine Chemicals, 2018, 35(9): 1491-1495 (in Chinese) doi: 10.13550/j.jxhg.20170643
    [56] 宁春平, 易玉华. 竹纤维在聚氨酯中的应用研究进展[J]. 聚氨酯工业, 2020, 35(6): 5-7 doi: 10.3969/j.issn.1005-1902.2020.06.002

    NING C P, YI Y H. The research progress in the application of bamboo fiber in polyurethane[J]. Polyurethane Industry, 2020, 35(6): 5-7 (in Chinese) doi: 10.3969/j.issn.1005-1902.2020.06.002
    [57] HUSAINIE S M, DENG X H, GHALIA M A, et al. Natural fillers as reinforcement for closed-molded polyurethane foam plaques: mechanical, morphological, and thermal properties[J]. Materials Today Communications, 2021, 27: 102187 doi: 10.1016/j.mtcomm.2021.102187
    [58] SHAH D U, VOLLRATH F, PORTER D. Silk cocoons as natural macro-balloon fillers in novel polyurethane-based syntactic foams[J]. Polymer, 2015, 56: 93-101 doi: 10.1016/j.polymer.2014.09.021
    [59] CZŁONKA S, SIENKIEWICZ N, STRĄKOWSKA A, et al. Keratin feathers as a filler for rigid polyurethane foams on the basis of soybean oil polyol[J]. Polymer Testing, 2018, 72: 32-45 doi: 10.1016/j.polymertesting.2018.09.032
    [60] 孙笑笑, 程志玲, 王颖, 等. 丝胶对丝素/丝胶共混材料结构和性能的影响[J]. 现代丝绸科学与技术, 2021, 36(1): 27-30 doi: 10.3969/j.issn.1674-8433.2021.01.008

    SUN X X, CHENG Z L, WANG Y, et al. Effect of sericin on the structure and properties of silk fibroin/sericin blend materials[J]. Modern Silk Science & Technology, 2021, 36(1): 27-30 (in Chinese) doi: 10.3969/j.issn.1674-8433.2021.01.008
    [61] KHALEEL M, SOYKAN U, ÇETIN S. Influences of turkey feather fiber loading on significant characteristics of rigid polyurethane foam: thermal degradation, heat insulation, acoustic performance, air permeability and cellular structure[J]. Construction and Building Materials, 2021, 308: 125014 doi: 10.1016/j.conbuildmat.2021.125014
    [62] 刘强, 郭毅, 张浩明. 微/纳米材料对聚氨酯硬泡性能影响的研究[J]. 聚氨酯工业, 2019, 34(4): 31-34 doi: 10.3969/j.issn.1005-1902.2019.04.010

    LIU Q, GUO Y, ZHANG H M. Effects of micro/nano materials on the properties of rigid polyurethane foams[J]. Polyurethane Industry, 2019, 34(4): 31-34 (in Chinese) doi: 10.3969/j.issn.1005-1902.2019.04.010
    [63] 芦艾, 黄锐, 王建华, 等. 碳酸钙增强聚氨酯泡沫塑料的形态与性能[J]. 中国塑料, 2001, 15(4): 32-35 doi: 10.3321/j.issn:1001-9278.2001.04.009

    LU A, HUANG R, WANG J H, et al. Morphology and properties of CaCO3 reinforced polyurethane foam[J]. China Plastics, 2001, 15(4): 32-35 (in Chinese) doi: 10.3321/j.issn:1001-9278.2001.04.009
    [64] 刘元俊, 冯永强, 贺传兰, 等. 玻璃微珠增强硬质聚氨酯泡沫塑料的压缩性能及热稳定性[J]. 复合材料学报, 2006, 23(2): 65-70 doi: 10.3321/j.issn:1000-3851.2006.02.012

    LIU Y J, FENG Y Q, HE C L, et al. Compressive properties and thermal stability of glass bead reinforced rigid polyurethane foams[J]. Acta Materiae Compositae Sinica, 2006, 23(2): 65-70 (in Chinese) doi: 10.3321/j.issn:1000-3851.2006.02.012
    [65] 王军, 高四, 王亦菲, 等. 纳米二氧化硅增强硬质聚氨酯泡沫塑料的制备[J]. 国防科技大学学报, 2004, 26(4): 86-89 doi: 10.3969/j.issn.1001-2486.2004.04.018

    WANG J, GAO S, WANG Y F, et al. Preparation of nano silicon dioxide reinforced rigid polyurethane foam[J]. Journal of National University of Defense Technology, 2004, 26(4): 86-89 (in Chinese) doi: 10.3969/j.issn.1001-2486.2004.04.018
    [66] YAN D X, XU L, CHEN C, et al. Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes[J]. Polymer International, 2012, 61(7): 1107-1114 doi: 10.1002/pi.4188
    [67] ZHANG L F, YILMAZ E D, SCHJØDT-THOMSEN J, et al. MWNT reinforced polyurethane foam: processing, characterization and modelling of mechanical properties[J]. Composites Science and Technology, 2011, 71(6): 877-884 doi: 10.1016/j.compscitech.2011.02.002
    [68] YEH J M, CHANG K C, PENG C W, et al. Preparation and insulation property studies of thermoplastic PMMA-silica nanocomposite foams[J]. Polymer Composites, 2009, 30(6): 715-722 doi: 10.1002/pc.20601
    [69] KABIR M E, SAHA M C, JEELANI S. Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite[J]. Materials Science and Engineering:A, 2007, 459(1-2): 111-116 doi: 10.1016/j.msea.2007.01.031
    [70] CAGLAYAN C, GURKAN I, GUNGOR S, et al. The effect of CNT-reinforced polyurethane foam cores to flexural properties of sandwich composites[J]. Composites Part A:Applied Science and Manufacturing, 2018, 115: 187-195 doi: 10.1016/j.compositesa.2018.09.019
    [71] LI Y, TIAN H F, ZHANG J, et al. Fabrication and properties of rigid polyurethane nanocomposite foams with functional isocyanate modified graphene oxide[J]. Polymer Composites, 2020, 41(12): 5126-5134 doi: 10.1002/pc.25780
    [72] ZHANG Q Q, LIN X Q, CHEN W S, et al. Modification of rigid polyurethane foams with the Addition of nano-SiO2 or lignocellulosic biomass[J]. Polymers, 2020, 12(1): 107 doi: 10.3390/polym12010107
    [73] BENAVIDES S, ARMANASCO F, CERRUTTI P, et al. Nanostructured rigid polyurethane foams with improved specific thermo-mechanical properties using bacterial nanocellulose as a Hard Segment[J]. Journal of Applied Polymer Science, 2021, 138(22): 50520 doi: 10.1002/app.50520
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  1303
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 网络出版日期:  2023-03-27
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回