留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进YOLOv4-tiny的带钢表面缺陷实时检测方法

邹旺 吉畅

邹旺,吉畅. 一种改进YOLOv4-tiny的带钢表面缺陷实时检测方法[J]. 机械科学与技术,2023,42(6):883-889 doi: 10.13433/j.cnki.1003-8728.20230034
引用本文: 邹旺,吉畅. 一种改进YOLOv4-tiny的带钢表面缺陷实时检测方法[J]. 机械科学与技术,2023,42(6):883-889 doi: 10.13433/j.cnki.1003-8728.20230034
ZOU Wang, JI Chang. Real-time Detection Method of Surface Defects of Hot-rolled Strip via Improved YOLOv4-tiny Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 883-889. doi: 10.13433/j.cnki.1003-8728.20230034
Citation: ZOU Wang, JI Chang. Real-time Detection Method of Surface Defects of Hot-rolled Strip via Improved YOLOv4-tiny Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 883-889. doi: 10.13433/j.cnki.1003-8728.20230034

一种改进YOLOv4-tiny的带钢表面缺陷实时检测方法

doi: 10.13433/j.cnki.1003-8728.20230034
基金项目: 贵州省教育厅青年人才成长项目(黔教合KY字[2020]121)与六盘水师范学院科学研究计划项目(LPSSYZK202004)
详细信息
    作者简介:

    邹旺(1993−),实验师,硕士,研究方向为智能制造、故障预测,781023098@qq.com

    通讯作者:

    吉畅,讲师,硕士,443264793@qq.com

  • 中图分类号: TP391.41;TP183;TG115.28

Real-time Detection Method of Surface Defects of Hot-rolled Strip via Improved YOLOv4-tiny Model

  • 摘要: 带钢表面缺陷检测是生产过程智能检测的重要任务。针对目前带钢表面缺陷检测算法效率低、实时性差的问题,本文提出了基于卷积神经网络的轻量级目标检测器。该方法以YOLOv4-tiny 模型为框架,针对带钢表面缺陷检测任务的特殊性,结合了多尺度检测与空间注意力机制的优化策略,在保证检测效率的同时提高了轻量级目标检测器的精度。实验证明,所提出的改进的YOLOv4-tiny模型能够精确地检测带钢表面缺陷,平均均值精度mAP(mean Average precision)为73.29%,并且每秒帧数FPS (Frames per second) 达到163,满足实际工业落地的实时性要求。
  • 图  1  YOLOv4-tiny网络结构图

    图  2  YOLOv4-tiny预测框示意图

    图  3  提出的改进YOLOv4-tiny算法

    图  4  空间注意力机制原理

    图  5  带钢表面缺陷样本图

    图  6  带钢表面缺陷检测结果图

    表  1  YOLOv4-tiny 和 YOLOv4 的性能对比

    模型输入图片
    尺寸
    mAPFPSBFlops预训练权
    重尺寸/MB
    YOLOv4-tiny512*51240.2%3716.923.1
    YOLOv4512*51264.9%4591.1245
    下载: 导出CSV

    表  2  消融实验结果

    网络图片分辨率mAP/%模型尺寸/m
    YOLOv4-tiny192*19262.9122.4
    YOLOv4-tiny-SAM192*19264.7423
    YOLOv4-tiny-multi192*19272.1823.4
    下载: 导出CSV

    表  3  不同算法性能对比

    表面缺陷Mobile-NetYOLOv3-tinyYOLOv4-tinyYOLOv5s改进的YOLOv4-tiny
    裂纹 10.09% 32.44% 34.34% 40.8% 41.51%
    夹杂 34.06% 45.22% 48.11% 77.1% 76.81%
    凹坑 63.28% 79.32% 80.61% 89.3% 88.30%
    麻点 26.79% 75.55% 77.65% 74.8% 82.44%
    辊印 28.77% 51.74% 52.52% 65.9% 59.67%
    划伤 23.52% 81.80% 84.21% 86.9% 90.98%
    mAP 31.09% 61.01% 62.91 % 72.47% 73.29%
    FPS 156 133 165 161 163
    下载: 导出CSV
  • [1] GHORAI S, MUKHERJEE A, GANGADARAN M, et al. Automatic defect detection on hot-rolled flat steel products[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(3): 612-621. doi: 10.1109/TIM.2012.2218677
    [2] 米春风, 卢琨, 汪文艳, 等. 基于机器视觉的带钢表面缺陷检测研究进展[J]. 安徽工业大学学报(自然科学版), 2022, 39(2): 180-188.

    MI C F, LU K, WANG W Y, et al. Research progress on hot-rolled strip surface defect detection based on machine vision[J]. Journal of Anhui University of Technology (Natural Science), 2022, 39(2): 180-188. (in Chinese)
    [3] CALEB-SOLLY P, SMITH J E. Adaptive surface inspection via interactive evolution[J]. Image and Vision Computing, 2007, 25(7): 1058-1072. doi: 10.1016/j.imavis.2006.04.023
    [4] YU Y W, YIN G F, DU L Q. Image classification for steel strip surface defects based on support vector machines[J]. Advanced Materials Research, 2011, 217-218: 336-340. doi: 10.4028/www.scientific.net/AMR.217-218.336
    [5] 韩英莉, 颜云辉. 基于BP神经网络的带钢表面缺陷的识别与分类[J]. 仪器仪表学报, 2006, 27(12): 1692-1694. doi: 10.3321/j.issn:0254-3087.2006.12.029

    HAN Y L, YAN Y H. Discernment and classification of banding strip surface defect based on BP neural network[J]. Chinese Journal of Scientific Instrument, 2006, 27(12): 1692-1694. (in Chinese) doi: 10.3321/j.issn:0254-3087.2006.12.029
    [6] 吴彰良, 孙长库, 刘洁. 基于图像处理的油封缺陷自动检测与分类识别方法[J]. 仪器仪表学报, 2013, 34(5): 1093-1099. doi: 10.3969/j.issn.0254-3087.2013.05.020

    WU Z L, SUN C K, LIU J. Oil-seal surface defect automatic detection and recognition method based on image processing[J]. Chinese Journal of Scientific Instrument, 2013, 34(5): 1093-1099. (in Chinese) doi: 10.3969/j.issn.0254-3087.2013.05.020
    [7] MAKAREMI M, RAZMJOOY N, RAMEZANI M. A new method for detecting texture defects based on modified local binary pattern[J]. Signal, Image and Video Processing, 2018, 12(7): 1395-1401. doi: 10.1007/s11760-018-1294-9
    [8] SONG K C, YAN Y H. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects[J]. Applied Surface Science, 2013, 285: 858-864. doi: 10.1016/j.apsusc.2013.09.002
    [9] LIU Y, XU K, WANG D D. Online surface defect identification of cold rolled strips based on local binary pattern and extreme learning machine[J]. Metals, 2018, 8(3): 197. doi: 10.3390/met8030197
    [10] 布申申, 田怀文. 基于卷积神经网络的带钢表面缺陷检测算法[J]. 机械设计与制造, 2022(7): 29-33. doi: 10.3969/j.issn.1001-3997.2022.07.007

    BU S S, TIAN H W. Strip surface defect detection algorithm based on convolutional neural network[J]. Machinery Design & Manufacture, 2022(7): 29-33. (in Chinese) doi: 10.3969/j.issn.1001-3997.2022.07.007
    [11] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700-4708.
    [12] 杨延西, 赵梦. 基于CNN的带钢表面缺陷检测[J]. 重型机械, 2019(2): 25-29. doi: 10.3969/j.issn.1001-196X.2019.02.006

    YANG Y X, ZHAO M. CNN-based strip steel surface defect detection[J]. Heavy Machinery, 2019(2): 25-29. (in Chinese) doi: 10.3969/j.issn.1001-196X.2019.02.006
    [13] 李维刚, 叶欣, 赵云涛, 等. 基于改进YOLOv3算法的带钢表面缺陷检测[J]. 电子学报, 2020, 48(7): 1284-1292. doi: 10.3969/j.issn.0372-2112.2020.07.006

    LI W G, YE X, ZHAO Y T, et al. Strip steel surface defect detection based on improved YOLOv3 algorithm[J]. Acta Electronica Sinica, 2020, 48(7): 1284-1292. (in Chinese) doi: 10.3969/j.issn.0372-2112.2020.07.006
    [14] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.
    [15] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.
    [16] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle: IEEE, 2020.
    [17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 3-19.
    [18] BAO Y Q, SONG K C, LIU J, et al. Triplet-graph reasoning network for few-shot metal generic surface defect segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5011111.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  76
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-04
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回