留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维声强与振速波束形成结合的声源识别方法研究

方夫民 柳小勤 伍星 郭祥

方夫民,柳小勤,伍星, 等. 三维声强与振速波束形成结合的声源识别方法研究[J]. 机械科学与技术,2024,43(2):291-296 doi: 10.13433/j.cnki.1003-8728.20220305
引用本文: 方夫民,柳小勤,伍星, 等. 三维声强与振速波束形成结合的声源识别方法研究[J]. 机械科学与技术,2024,43(2):291-296 doi: 10.13433/j.cnki.1003-8728.20220305
FANG Fumin, LIU Xiaoqin, WU Xing, GUO Xiang. Two Sound Source Separation and Power Calculation Methods Combined with Three-dimensional Sound Intensity and Vibration Velocity Beamforming[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 291-296. doi: 10.13433/j.cnki.1003-8728.20220305
Citation: FANG Fumin, LIU Xiaoqin, WU Xing, GUO Xiang. Two Sound Source Separation and Power Calculation Methods Combined with Three-dimensional Sound Intensity and Vibration Velocity Beamforming[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 291-296. doi: 10.13433/j.cnki.1003-8728.20220305

三维声强与振速波束形成结合的声源识别方法研究

doi: 10.13433/j.cnki.1003-8728.20220305
基金项目: 国家自然科学基金项目(51875272)
详细信息
    作者简介:

    方夫民,硕士研究生,fangfuminyx@163.com

    通讯作者:

    柳小勤,教授,博士生导师,liuxiaoqin@kust.edu.cn

  • 中图分类号: TH73

Two Sound Source Separation and Power Calculation Methods Combined with Three-dimensional Sound Intensity and Vibration Velocity Beamforming

  • 摘要: 针对难以准确分离同频率双声源及计算声功率值的问题,提出三维声强矢量与质点振速的常规波束形成技术结合的声源识别方法,应用于同频率双声源的定位与声功率分离中。利用三维声强矢量特性求解各探头中心处质点振速与声强值;将质点振速引入常规波束形成对各声源定位;将定位结果代入三维声强矢量分解法中,构建声强、声功率的非线性方程组,求解得各声源声功率值。在半消声室内进行实验,实验结果表明:质点振速波束形成的声源定位方法可行,三维声强矢量方程组求解各声源声功率值误差在5%以内。
  • 图  1  三维声强探头基本结构

    Figure  1.  Structure of three-dimensional sound intensity probe

    图  2  自制三维声强探头

    Figure  2.  Homemade three-dimensional sound intensity probe

    图  3  声强测量示意图

    Figure  3.  Schematic diagram of sound intensity measurement

    图  4  近场波束形成示意图

    Figure  4.  Schematic diagram of near field beamforming

    图  5  求解各声功率值的流程图

    Figure  5.  Flow chart for solving each sound power value

    图  6  声源与探头阵列位置示意图

    Figure  6.  Positions of sound source and probe array

    图  7  实验设置

    Figure  7.  Experimental setup

    图  8  三维声强矢量示意图

    Figure  8.  Three-dimensional sound intensity vector diagram

    图  9  不同频率下振速波束形成的双声源定位图

    Figure  9.  Dual sound source localization diagram of vibration velocity beamforming at different frequencies

    表  1  声强探头阵列实验所测声强分量

    Table  1.   Sound intensity component measured by sound intensity probe array experiment    1×10−7 W/m2

    声源频率 探头1 探头2 探头3 探头4 探头5 探头6 探头7 探头8 探头9
    $ {I_{Tx}} $ 2.0242 7.6755 15.362 27.561 41.935 18.364 14.972 41.935 19.311
    $ {I_{Ty}} $ 16.580 16.599 16.686 17.249 17.671 −7.2005 4.6022 17.671 43.327
    $ {I_{Tz}} $ 108.33 107.76 108.08 110.13 131.11 106.99 107.53 113.11 114.24
    下载: 导出CSV

    表  2  各探头声功率值计算结果

    Table  2.   Calculation results of sound power of each probe

    声源 实验平均值/W 真实值/W 误差/%
    1 13.5270×10−6 14.2001×10−6 4.7401
    2 2.9882×10−6 3.0523×10−6 2.1000
    下载: 导出CSV
  • [1] TOKAJI K, HORVÁTH C. Effect of a pylon on the broadband noise sources of counter-rotating turbomachinery[J]. International Journal of Aeroacoustics, 2021, 20(8): 979-1002. doi: 10.1177/1475472X211055178
    [2] 陈壮, 俞一彪. 噪声自适应拟合补偿的鲁棒性声纹识别算法[J]. 声学学报, 2022, 47(1): 151-160.

    CHEN Z, YU Y B. Robust voiceprint recognition with adaptive anti-noise ability based on fitting and compensation[J]. Acta Acustica, 2022, 47(1): 151-160. (in Chinese)
    [3] 王红卫, 高艺帆, 於秀. 基于三维声强法的吸声系数测量研究[J]. 华南理工大学学报(自然科学版), 2020, 48(7): 134-142.

    WANG H W, GAO Y F, YU X. Sound absorption coefficient measurement based on three-dimensional sound intensity method[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(7): 134-142. (in Chinese)
    [4] SUZUKI H, OGURO S, ANZAI M, et al. Performance evaluation of a three dimensional intensity probe[J]. Journal of the Acoustical Society of Japan (E), 1995, 16(4): 233-238. doi: 10.1250/ast.16.233
    [5] SUZUKI H, OGURO S, ONO T. A sensitivity correction method for a three-dimensional sound intensity probe[J]. Acoustical Science and Technology, 2000, 21(5): 259-265.
    [6] BASTEN T G H, DE BREE H E, DRUYVESTEYN W F, et al. Multiple incoherent sound source localization using a single vector sensor[C]//Proceedings of the 16th International Congress on Sound and Vibration. Kraków, Poland: International Institute of Acoustics and Vibration, 2009.
    [7] 王红卫, 张龙. 平面声场中四传声器阵列理论精度的对比分析[J]. 声学技术, 2016, 35(4): 308-313.

    WANG H W, ZHANG L. Comparative analysis of the theoretical accuracy for two four-microphone probes in plane sound field[J]. Technical Acoustics, 2016, 35(4): 308-313. (in Chinese)
    [8] 鲁毅, 柳小勤, 伍星, 等. 双声源位置和强度识别的三维声强方法[J]. 声学学报, 2020, 45(3): 377-384.

    LU Y, LIU X Q, WU Xing, et al. Identification of two sound sources using the three-dimensional sound intensity method[J]. Acta Acustica, 2020, 45(3): 377-384. (in Chinese)
    [9] CHAI S Y, LIU X Q, WU X, et al. Separation of the sound power spectrum of multiple sources by three-dimensional sound intensity decomposition[J]. Sensors, 2021, 21(1): 279. doi: 10.3390/s21010279
    [10] WU H J, WEI X Y, ZHA Y, et al. Acoustic spatial patterns recognition based on convolutional neural network and acoustic visualization[J]. The Journal of the Acoustical Society of America, 2020, 147(1): 459-468. doi: 10.1121/10.0000618
    [11] HALD J. Estimation of partial area sound power data with beamforming[C]//INTER - NOISE and NOISE - CON Congress and Conference Proceedings. Rio de Janeiro: Institute of Noise Control Engineering, 2005: 2424-2433.
    [12] 褚志刚, 杨洋. 基于波束形成缩放声强的声源局部声功率计算[J]. 声学学报, 2013, 38(3): 265-271.

    CHU Z G, YANG Y. Calculation of the partial area sound power based on the scaled beamforming sound intensity[J]. Acta Acustica, 2013, 38(3): 265-271. (in Chinese)
    [13] 岳舒, 侯宏, 王谦. 线阵波束形成声强缩放方法估算声源的辐射声功率[J]. 声学学报, 2020, 45(2): 169-175.

    YUE S, HOU H, WANG Q. Estimation of the radiated sound power by linear array beamforming sound intensity scaling method[J]. Acta Acustica, 2020, 45(2): 169-175. (in Chinese)
    [14] 岳舒, 侯宏, 于佳雨, 等. 线阵声强缩放方法在水下声源辐射功率估算中的应用[J]. 声学学报, 2021, 46(2): 246-254.

    YUE S, HOU H, YU J Y, et al. The application of linear array sound intensity scaling method in underwater sound source radiated power estimation[J]. Acta Acustica, 2021, 46(2): 246-254. (in Chinese)
    [15] 高志婷. 基于振速测量的波束形成技术研究[D]. 合肥: 合肥工业大学, 2015.

    GAO Z T. Study on beamforming techniques based on velocity measurements[D]. Hefei: Hefei University of Technology, 2015(in Chinese).
    [16] MICKIEWICZ W, RACZYŃSKI M. Mechatronic 3D sound intensity probe and its application to DOA[C]//Proceedings of the 23rd International Conference on Methods & Models in Automation & Robotics. Miedzyzdroje, Poland: IEEE, 2018: 747-751.
    [17] IH J G, JUNG I J, WOO J H. Source localization with three-dimensional sound intensity probe with high precision[J]. The Journal of the Acoustical Society of America, 2017, 141(5): 3587.
    [18] PINOCHET J, CORTADA W B, PEÑA M S. Graphic relation between amplitude and sound intensity level[J]. The Physics Teacher, 2021, 59(6): 467-469. doi: 10.1119/10.0006131
    [19] CHIARIOTTI P, MARTARELLI M, CASTELLINI P. Acoustic beamforming for noise source localization-Reviews, methodology and applications[J]. Mechanical Systems and Signal Processing, 2019, 120: 422-448. doi: 10.1016/j.ymssp.2018.09.019
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  17
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回