留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数据驱动的新能源公交车能耗预测

胡杰 杨光宇 何陈 朱雪玲

胡杰,杨光宇,何陈, 等. 数据驱动的新能源公交车能耗预测[J]. 机械科学与技术,2024,43(2):318-324 doi: 10.13433/j.cnki.1003-8728.20220303
引用本文: 胡杰,杨光宇,何陈, 等. 数据驱动的新能源公交车能耗预测[J]. 机械科学与技术,2024,43(2):318-324 doi: 10.13433/j.cnki.1003-8728.20220303
HU Jie, YANG Guangyu, HE Chen, ZHU Xueling. Data-driven Energy Consumption Prediction of New Energy Buses[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 318-324. doi: 10.13433/j.cnki.1003-8728.20220303
Citation: HU Jie, YANG Guangyu, HE Chen, ZHU Xueling. Data-driven Energy Consumption Prediction of New Energy Buses[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 318-324. doi: 10.13433/j.cnki.1003-8728.20220303

数据驱动的新能源公交车能耗预测

doi: 10.13433/j.cnki.1003-8728.20220303
基金项目: 湖北省科技重大专项(2020AAA001)
详细信息
    作者简介:

    胡杰,副教授,博士生导师,博士,auto_hj@163.com

  • 中图分类号: U491

Data-driven Energy Consumption Prediction of New Energy Buses

  • 摘要: 鉴于现有电动车能耗预测多基于实验室条件,存在结果过于理想化或预测准确度不足的问题。本文基于北京市51路公交车的实车运行数据,分析能耗影响因素,通过时钟循环编码优化时间信息、使用箱线图设置阈值以构造行驶工况、建立基于熵权法的驾驶行为评价体系对驾驶行为与工况状态进行辅助分析,最后,对聚类后的4类典型工况片段分别建立引入注意力机制的LSTM能耗预测模型,并将其与传统LSTM及LGBM等多种预测模型进行对比分析,验证结果表明引入注意力机制的LSTM预测模型性能显著高于其他模型。
  • 图  1  基于注意力机制的LSTM能耗预测

    Figure  1.  Energy consumption prediction based on attention mechanism LSTM

    图  2  速度和加速度随着经纬度变化图

    Figure  2.  Variation of velocity and acceleration with latitude and longitude

    图  3  新能源公交车能耗变化趋势

    Figure  3.  The change trend of new energy bus energy consumption

    图  4  第$ i $个小时的式中循环编码表示方法

    Figure  4.  Clock cycle-coded representation of the i hour

    图  5  加速度90百分位箱线图

    Figure  5.  90th percentile box of acceleration

    图  6  轮廓系数图

    Figure  6.  Silhouette Coefficient

    图  7  注意力机制结构简图

    Figure  7.  Structure of attention mechanisms

    图  8  模型总体结构图

    Figure  8.  Structure of the model

    图  9  测试集平均绝对百分比误差图

    Figure  9.  MAPE of test sets

    图  10  测试集均方误差图

    Figure  10.  RMSE of test sets

    表  1  数据采集表

    Table  1.   Data collection form

    数据表示内容 数据格式
    车辆状态 1.0启动,2.0熄火
    充电状态 1.0停车充电,3.0未充电
    运行模式 1.0纯电
    车速 0 ~ 220 km/h
    累计里程 0 ~ 99999.9 km,最小单位0.1 km
    总电压 0 ~ 1000 V,最小单位0.1 V
    总电流 −1000 ~ 1000 A,最小单位0.1 A
    SOC 0 ~ 100%,最小单位1%
    档位 13 倒挡,14 D档,15 P档
    驱动电机控制器温度 0 ~ 250 ℃
    驱动电机转速 −20000 ~ 45331 r/min
    驱动电机转矩 −2000 ~ 4533.1 N·m
    驱动电机温度 −40 ~ 210 ℃
    电机控制器输入电压 0 ~ 6000 V,最小单位0.1 V
    电机控制器直流
    母流电流
    −1000 ~ 1000 A,最小单位0.1 A
    加速踏板行程值 0 ~ 100%
    制动踏板状态 0 ~ 100%
    下载: 导出CSV

    表  2  随机森林填补结果

    Table  2.   The results of filling with random forests

    参数 总电压 电机控制器输入电压 电机控制器
    直流母流电流
    驱动电机转速 驱动电机转矩
    平均相对误差 3.0% 3.8% 2.5% 2.0% 3.7%
    下载: 导出CSV

    表  3  驾驶行为指标权值

    Table  3.   Index weights of driving behavior

    评价指标 权值
    速度变化率方差 0.2487
    急加速比 0.1067
    急减速比 0.1173
    踏板保持率 0.0630
    急踩踏板比 0.0843
    怠速比 0.0503
    匀速比 0.2136
    高速比 0.1161
    下载: 导出CSV

    表  4  特征库

    Table  4.   Feature list

    特征类别 说明 Index
    电池状态信息 电压一致性得分
    电池容量
    电流最大值、方差
    电压方差
    1~5
    时间信息 季度、天数、星期、刻钟 6~9
    环境信息 气温、风速均值 10~11
    电机运行信息 电机转速均值
    电机转矩均值
    电机电压方差
    12~14
    行驶工况 最大速度值
    最大加速度值
    速度变化率及标准差
    加速度变化率及标准差
    加、减、怠速比,
    15~23
    驾驶行为信息 加、减速踏板比
    踏板保持比例
    减速踏板平均状态
    驾驶行为得分
    驾驶行为得分方差及L2范数
    24~30
    下载: 导出CSV

    表  5  LSTM模型效果对比

    Table  5.   Comparison of LSTM model effects

    分组MAPERMSE
    LSTM2.8%0.026
    聚类 + 多LSTM2.35%0.021
    聚类 + 注意力机制 + 多LSTM2.1%0.015
    LGBM3.6 %1.01
    XGBoost4.3%1.37
    CatBoost4.6%1.37
    SVR4.9%1.83
    下载: 导出CSV
  • [1] 周斌. 纯电动汽车动力电池SOC与续驶里程估算研究[D]. 合肥: 合肥工业大学, 2014.

    ZHOU B. Research on power battery SOC and driving range estimation of battery electric vehicle[D]. Hefei: Hefei University of Technology, 2014. (in Chinese)
    [2] 陈秋谨. 基于Simulink的电动汽车SOC估计及续航里程研究[D]. 西安: 长安大学, 2018.

    CHEN Q J. Research on SOC estimation and range of electric vehicle based on Simulink[D]. Xi′an: Chang′an University, 2018. (in Chinese)
    [3] PANDIT S B, KSHATRIYA T K, VAIDYA V G. Motor assistance for a hybrid vehicle based on predicted driving range: US, 20110087390A1[P]. 2011-01-14.
    [4] SIY T, HERRMANN M A, LINDEMANN T P, et al. Electrical vehicle range prediction: US, 20120109408A1[P]. 2012-05-03.
    [5] BINGHAM C. Power/energy storage technologies and energy management[C]//2010 AECS Advanced Engine Control Symposium. Tianjin, China: AECS, 2010: 245-254.
    [6] FELIPE J, AMARILLO J C, NARANJO J E, et al. Energy consumption estimation in electric vehicles considering driving style[C]//2015 IEEE 18th International Conference on Intelligent Transportation Systems. Gran Canaria: IEEE, 2015: 101-106.
    [7] DE CAUWER C, VERBEKE W, COOSEMANS T, et al. A data-driven method for energy consumption prediction and energy-efficient routing of electric vehicles in real-world conditions[J]. Energies, 2017, 10(5): 608. doi: 10.3390/en10050608
    [8] DE NUNZIO G, THIBAULT L, SCIARRETTA A. A model-based eco-routing strategy for electric vehicles in large urban networks[C]//2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). Rio de Janeiro: IEEE, 2016: 2301-2306.
    [9] 程江洲, 余子容, 程杉, 等. 城市路网中考虑多方影响的电动汽车能耗预测[J]. 电测与仪表, 2020, 57(20): 90-97. doi: 10.19753/j.issn1001-1390.2020.20.013

    CHENG J Z, YU Z R, CHENG S, et al. Energy consumption prediction of electric vehicle considering multiple influences in urban road network[J]. Electrical Measurement & Instrumentation, 2020, 57(20): 90-97. (in Chinese) doi: 10.19753/j.issn1001-1390.2020.20.013
    [10] 刘轶鑫, 张頔, 李雪, 等. 基于SOC-OCV曲线特征的SOH估计方法研究[J]. 汽车工程, 2019, 41(10): 1158-1163.

    LIU Y X, ZHANG D, LI X, et al. A research on SOH estimation method based on SOC-OCV curve characteristics[J]. Automotive Engineering, 2019, 41(10): 1158-1163. (in Chinese)
    [11] 陈雪平, 张海亮, 钟再敏, 等. 插电式混合动力汽车能耗及其影响因素分析[J]. 同济大学学报(自然科学版), 2016, 44(11): 1749-1754.

    CHEN X P, ZHANG H L, ZHONG Z M, et al. Simulation and user factors analysis of energy consumption of plug-in hybrid electric vehicles[J]. Journal of Tongji University (Natural Science), 2016, 44(11): 1749-1754. (in Chinese)
    [12] CARLSON R, GELLER B. Factors affecting the fuel consumption of plug-in hybrid electric vehicles[C]//The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition. Shenzhen, China: CVS, 2010: 289-294.
    [13] 曹正策, 岳翔, 张旭, 等. 基于EMT纯电动公交车的行驶工况研究和构建[J]. 汽车技术, 2016(4): 22-26.

    CAO Z C, YUE X, ZHANG X, et al. Research and establishment of driving cycles of pure electric buses based on EMT[J]. Automobile Technology, 2016(4): 22-26. (in Chinese)
    [14] 孙骏, 方涛, 张炳力, 等. 基于改进K-均值聚类算法的合肥市电动客车行驶工况构建[J]. 汽车技术, 2020, 51(8): 56-62.

    SUN J, FANG T, ZHANG B L, et al. Construction of Hefei electric buses driving cycle based on improved K-means clustering[J]. Automobile Technology, 2020, 51(8): 56-62. (in Chinese)
    [15] 严英, 庄继晖, 谢辉. 纯电动公交客车司机驾驶行为差异对能耗的影响[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(3): 231-236.

    YAN Y, ZHUANG J H, XIE H. Influence of the driver behavior difference on the energy consumption of the pure electric buses[J]. Journal of Tianjin University (Science and Technology), 2014, 47(3): 231-236. (in Chinese)
    [16] 张红妮. 基于驾驶行为的纯电动公交车能耗规律与节能对策[D]. 西安: 长安大学, 2020.

    ZHANG H N. Energy consumption law and energy-saving measures based on driving behavior[D]. Xi′an: Chang′an University, 2020. (in Chinese)
    [17] 冯焕焕, 邓建华, 葛婷. 引入驾驶风格的熵权法多属性换道决策模型[J]. 交通运输系统工程与信息, 2020, 20(2): 139-144.

    FENG H H, DENG J H, GE T. Multi-attributes lane-changing decision model based on entropy weight with driving styles[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 139-144. (in Chinese)
    [18] 赵兵, 王增平, 纪维佳, 等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术, 2019, 43(12): 4370-4376.

    ZHAO B, WANG Z P, JI W J, et al. A short-term power load forecasting method based on attention mechanism of CNN-GRU[J]. Power System Technology, 2019, 43(12): 4370-4376. (in Chinese)
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  15
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回