留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车辆舒适停车二次速度曲线算法

徐哲 刘豪 党威 胡趁义 龙永文

徐哲, 刘豪, 党威, 胡趁义, 龙永文. 车辆舒适停车二次速度曲线算法[J]. 机械科学与技术, 2023, 42(10): 1719-1726. doi: 10.13433/j.cnki.1003-8728.20220302
引用本文: 徐哲, 刘豪, 党威, 胡趁义, 龙永文. 车辆舒适停车二次速度曲线算法[J]. 机械科学与技术, 2023, 42(10): 1719-1726. doi: 10.13433/j.cnki.1003-8728.20220302
XU Zhe, LIU Hao, DANG Wei, HU Chenyi, LONG Yongwen. Algorithm of Quadratic Speed Curve for Comfortable Parking[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1719-1726. doi: 10.13433/j.cnki.1003-8728.20220302
Citation: XU Zhe, LIU Hao, DANG Wei, HU Chenyi, LONG Yongwen. Algorithm of Quadratic Speed Curve for Comfortable Parking[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1719-1726. doi: 10.13433/j.cnki.1003-8728.20220302

车辆舒适停车二次速度曲线算法

doi: 10.13433/j.cnki.1003-8728.20220302
基金项目: 

国家自然科学基金项目 62241201

重庆市自然科学基金项目 cstc2019jcyj-msxmX0119

重庆市教委科学技术研究项目 KJQN201801101

详细信息
    作者简介:

    徐哲(1983-), 讲师, 硕士生导师, 博士, 研究方向为汽车底盘电子控制、无人驾驶, xuzhe@cqut.edu.cn

  • 中图分类号: U461.4

Algorithm of Quadratic Speed Curve for Comfortable Parking

  • 摘要: 停车制动过程中车速变为0时,车辆加速度的阶跃变化是影响制动舒适性的主要原因。通过对纵向制动工况进行控制,即对制动后期的加速度和速度重新规划,对速度的规划采用二次曲线形式。规划后车辆制动时的冲击度(加速度的时间变化率)明显减小。在MATLAB软件中验证了算法的正确性,并通过Simulink和Carsim联合仿真得到了整车层面上的优化结果。针对制动舒适性与制动安全性的问题,提出制动系统“减压-保压-增压”的解决方案,并进行了实车试验,试验结果表明各项评价指标良好,在保证安全性的情况下提高了舒适性。
  • 图  1  制动舒适性研究方法雷达图

    Figure  1.  Radar diagram of brake comfort research methods

    图  2  制动过程中车身与乘员的姿态变化

    Figure  2.  Change of attitude of vehicle body and occupant during braking

    图  3  普通制动时加速度、俯仰角曲线

    Figure  3.  Acceleration and pitch angle response during normal braking

    图  4  普通制动时的速度曲线

    Figure  4.  Velocity profile during normal braking

    图  5  规划的加速度、速度、冲击度曲线

    Figure  5.  Planned acceleration, velocity and jerk curves

    图  6  规划前后的冲击度曲线

    Figure  6.  Jerk curve before and after planning

    图  7  舒适停车算法控制框架

    Figure  7.  Control framework of comfort parking algorithm

    图  8  理论上算法作用效果对比

    Figure  8.  Comparison of theoretical algorithmic effects

    图  9  考虑安全性的仿真验证

    Figure  9.  Simulation and verification with security considered

    图  10  施加算法前后的制动距离

    Figure  10.  Brake distance with or without algorithm implementation

    图  11  试验车辆及试验模块

    Figure  11.  Experiment vehicle and measurement module

    图  12  制动过程中各参数的变化曲线

    Figure  12.  Curve of various parameter changes during the braking process

    表  1  算法作用前后效果对比

    Table  1.   Comparison of effects with or without algorithmic effects

    制动情况 制动距离/m 冲击度/(m·s-3)
    无控制 46.24 2 511
    有控制 46.29 125
    下载: 导出CSV
  • [1] PAVLOV N L. Reducing pitch angle and suspension jounces of a truck when braking on railway crossing by control of semiactive suspension[J]. International Journal of Mechanical Engineering and Technology, 2019, 10(3): 1584-1586.
    [2] WANG X F, SHI G, JIN L G, et al. A study on pitching characteristics of the passenger car in braking process[C]//Proceedings of the FISITA 2012 World Automotive Congress. Berlin: Springer, 2013: 505-522.
    [3] BIN AHMAD F, HUDHA K, JAMALUDDIN H. Gain scheduling PID control with pitch moment rejection for reducing vehicle dive and squat[J]. International Journal of Vehicle Safety, 2009, 4(1): 45-83. doi: 10.1504/IJVS.2009.026973
    [4] ZHANG Y C, ZHAO L, CONG H, et al. Study on control of vehicle attitude and ride comfort based on full-car model[C]//Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No. 04EX788). Hangzhou: IEEE, 2004: 3514-3519.
    [5] TAVERNINI D, VELENIS E, LONGO S. Feedback brake distribution control for minimum pitch[J]. Vehicle System Dynamics, 2017, 55(6): 902-923. doi: 10.1080/00423114.2017.1293275
    [6] TAVERNINI D, VELENIS E, LONGO S. Model-based active brake force distribution for pitch angle minimization[C]//2015 54th IEEE Conference on Decision and Control (CDC). Osaka: IEEE, 2015: 197-202.
    [7] LEE J, CHOI S. Braking control for improving ride comfort[J]. MATEC Web of Conferences, 2018, 166: 02002. doi: 10.1051/matecconf/201816602002
    [8] HOU X H, ZHANG J Z, LIU W L, et al. LuGre model-based longitudinal ride comfort control of vehicle during the post-braking phase[C]//2020 Chinese Automation Congress (CAC). Shanghai: IEEE, 2020: 7307-7313.
    [9] KOO S L. Vehicle control utilizing an improved model of tire contact patch kinematics[M]. Berkeley: University of California, 2007.
    [10] KOO S L, TAN H S, TOMIZUKA M. Analysis of vehicle longitudinal dynamics for longitudinal ride comfort[C]//ASME 2006 International Mechanical Engineering Congress and Exposition. Chicago: ASME, 2006: 431-439.
    [11] KOO S L, TAN H S, BU F P, et al. Vehicle longitudinal ride comfort control in stop-and-go traffic[C]// ASME 2006 International Mechanical Engineering Congress and Exposition. Chicago: ASME, 2006: 473-481.
    [12] DE VRIES E, FEHN A, RIXEN D. Flatness-based model inverse for feed-forward braking control[J]. Vehicle System Dynamics, 2010, 48(S1): 353-372.
    [13] ANTONOV S, FEHN A, KUGI A. A new flatness-based control of lateral vehicle dynamics[J]. Vehicle System Dynamics, 2008, 46(9): 789-801. doi: 10.1080/00423110701602696
    [14] 陈朋成. 电动助力制动系统及压力控制方法研究[D]. 长春: 吉林大学, 2019.

    CHEN P C. Research on control strategy of the electric power assisted brake system and pressure[D]. Changchun: Jilin University, 2019. (in Chinese)
    [15] ZHAO J, HU Z Q, ZHU B. Pressure control for hydraulic brake system equipped with an electro-mechanical brake booster[R]. SAE Technical Paper, 2018.
    [16] XIONG Z, GUO X X, YANG B, et al. Modeling and pressure tracking control of a novel electro-hydraulic braking system[J]. Advances in Mechanical Engineering, 2018, 10(3): 1687814018764153.
    [17] 霍舒豪. 基于悬架和线控制动联合控制的制动平顺性研究[D]. 北京: 清华大学, 2015.

    HUO S H. Research on braking ride comfort based on integrated control of suspension and brake-by-wire system[D]. Beijing: Tsinghua University, 2015. (in Chinese)
    [18] GOUDY R A. Brake control strategy for optimized safety and comfort[C]//Towards the New Horizon Together. Proceedings of the 5th World Congress on Intelligent Transport Systems. Transport Research Laboratory, 1998.
    [19] MOHTAVIPOUR S M, MOLLAJAFARI M, NASERI A. A guaranteed-comfort and safe adaptive cruise control by considering driver's acceptance level[J]. International Journal of Dynamics and Control, 2019, 7(3): 966-980. doi: 10.1007/s40435-018-0500-5
    [20] CHEN S, ZHANG X L, WANG J Z. Sliding mode control of vehicle equipped with brake-by-wire system considering braking comfort[J]. Shock and Vibration, 2020, 2020: 5602917.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  41
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回