留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进灰狼算法在搬运机器人轨迹规划中的应用

张攀 刘雨晗 张威

张攀,刘雨晗,张威. 改进灰狼算法在搬运机器人轨迹规划中的应用[J]. 机械科学与技术,2024,43(3):394-401 doi: 10.13433/j.cnki.1003-8728.20220286
引用本文: 张攀,刘雨晗,张威. 改进灰狼算法在搬运机器人轨迹规划中的应用[J]. 机械科学与技术,2024,43(3):394-401 doi: 10.13433/j.cnki.1003-8728.20220286
ZHANG Pan, LIU Yuhan, ZHANG Wei. Application of Improved Gray Wolf Algorithm in Trajectory Planning of Pallet Handling Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 394-401. doi: 10.13433/j.cnki.1003-8728.20220286
Citation: ZHANG Pan, LIU Yuhan, ZHANG Wei. Application of Improved Gray Wolf Algorithm in Trajectory Planning of Pallet Handling Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 394-401. doi: 10.13433/j.cnki.1003-8728.20220286

改进灰狼算法在搬运机器人轨迹规划中的应用

doi: 10.13433/j.cnki.1003-8728.20220286
基金项目: 国家自然科学基金民航联合基金重点项目(U2033208)、中央高校基本科研业务费项目(3122023018)及天津市研究生科研创新项目(2021YJSS122)
详细信息
    作者简介:

    张攀,讲师,博士,p-zhang@cauc.edu.cn

    通讯作者:

    张威,教授,博士生导师,博士,weizhang@cauc.edu.cn

  • 中图分类号: TP242;V354

Application of Improved Gray Wolf Algorithm in Trajectory Planning of Pallet Handling Robot

  • 摘要: 为提高托盘式搬运机器人的运行稳定性,提出一种基于改进灰狼算法的机器人加速度最优轨迹规划方法。针对灰狼算法局部收敛、寻优性能不足等问题,引入Logistic-Tent混沌映射,优化初始种群;引入差分优化算法,提高全局搜索能力;引入淘汰进化机制,优化种群结构,从而全面提升优化性能。仿真结果表明,对比标准灰狼算法和粒子群算法,改进灰狼算法在不同类型的测试函数中具有更好的收敛速度和算法精度;在搬运机器人轨迹规划的应用中,经过该算法优化后的机器人最大关节角加速度下降了44.11%,大幅提高了运行稳定性。
  • 图  1  PSO、GWO和IGWO算法求解8种基准函数的收敛曲线图

    Figure  1.  Convergence curves of PSO, GWO, and IGWO algorithms for solving 8 benchmark functions

    图  2  机器人接放行李运动轨迹

    Figure  2.  Robot's movement trajectory for handling luggage

    图  3  机器人各关节角度

    Figure  3.  Angles of robot joints

    图  4  机器人各关节角速度

    Figure  4.  Angular velocity of robot joints

    图  5  机器人各关节角加速度

    Figure  5.  Angular acceleration of robot joints

    图  6  优化后的关节角加速度曲线

    Figure  6.  Optimized joint angular acceleration curve

    表  1  各算法参数设置

    Table  1.   Parameter settings for each algorithm

    算法 参数
    IGWO 交叉概率0.8;缩放因子0.6;种群淘汰比例因子6
    PSO 惯性权重分别为0.9和0.6,学习因子c1=c2=2;
    个体速度范围为[−0.5,0.5]
    下载: 导出CSV

    表  2  各基准函数

    Table  2.   Each benchmark function

    函数 表达式 维数 定义域
    F1 ${F_1}(x) = {\max _i}\left\{ {|{x_i}|,1 \leqslant i \leqslant 30} \right\}$ 30 [−100, 100]
    F2 ${F_2}(x) = \displaystyle\sum\limits_{i = 1}^{30} {{\left(\displaystyle\sum\limits_{i = 1}^{30} {{x_j}} \right)^2}} $ 30 [−100, 100]
    F3 ${F_3}(x) = - 20\exp \left( - 0.2\sqrt {\dfrac{1}{ {30} }\displaystyle\sum\limits_{i = 1}^{30} {x_i^2} } \right) - {\rm exp}\left(\dfrac{1}{ {30} }\displaystyle\sum\limits_{i = 1}^{30} {\cos 2{\text{π} } x_i^2} \right) + 20 + e$ 30 [−32, 32]
    F4 ${F_4}(x) = \displaystyle\sum\limits_{i = 1}^{30} {|{x_i}|} + \displaystyle\prod\limits_{i = 1}^{30} {|{x_i}|} $ 30 [−10, 10]
    F5 ${F_5}(x) = \displaystyle\sum\limits_{i = 1}^{30} {i{x_i}^4} + {\rm rand}[0,1)$ 30 [−1.28, 1.28]
    F6 ${F_6}(x) = \displaystyle\sum\limits_{i = 1}^{30} { - {x_i}\sin (\sqrt {|{x_i}|} )} $ 30 [−10, 10]
    F7 ${F_7}(x) = {\left[\begin{array}{c}\dfrac{1}{{500}} + \displaystyle\sum\limits_{j = 1}^{25} {\dfrac{1}{{j + \displaystyle\sum\limits_{i = 1}^2 {{{({x_i} - {a_{ij}})}^6}} }}} \end{array}\right]^{ - 1}}$ 2 [−65, 65]
    F8 ${F_8}(x) = \displaystyle\sum\limits_{i = 1}^{30} {[{x_i}^2} - 10\cos (2{\text{π}} {x_i}) + 10]$ 30 [−5.12, 5.12]
    下载: 导出CSV

    表  3  基准测试函数寻优结果

    Table  3.   Benchmarking function optimization results

    函数 方法 平均值 最差值 最优值 标准差
    F1 PSO 1.135816 1.514037 0.907737 0.183233
    GWO 7.29 × 10−7 1.58 × 10−6 6.31 × 10−8 5.01 × 10−7
    IGWO 7.18 × 10−10 3.09 × 10−9 5.12 × 10−11 8.28 × 10−10
    F2 PSO 81.48382 114.4711 39.78484 21.821
    GWO 3.20 × 10−5 2.95 × 10−4 2.29 × 10−9 8.76 × 10−5
    IGWO 2.46 × 10−11 1.62 × 10−10 2.79 × 10−15 4.71 × 10−11
    F3 PSO 0.129362 1.159753 0.003876 0.343681
    GWO 1.01 × 10−13 1.29 × 10−13 7.90 × 10−14 1.58 × 10−14
    IGWO 2.86 × 10−14 3.29 × 10−14 2.22 × 10−14 3.10 × 10−15
    F4 PSO 4.25 × 10−2 1.55 × 10−1 5.81 × 10−3 0.041668
    GWO 9.24 × 10−17 2.84 × 10−16 1.46 × 10−17 8.49 × 10−17
    IGWO 1.23 × 10−25 4.04 × 10−25 1.32 × 10−26 1.18 × 10−25
    F5 PSO 0.173628 0.279294 0.102187 0.059145
    GWO 0.002243 0.006324 0.000439 0.001718
    IGWO 0.000745 0.001364 0.000493 0.000237
    F6 PSO −5089.57 −2701.84 −6686.21 1129.513
    GWO −5844.04 −4751.61 −7069.2 726.476
    IGWO −8.80 × 1057 −1.70 × 1052 −4.50 × 1058 1.33 × 1058
    F7 PSO 2.679246 5.928845 0.998004 1.766345
    GWO 3.844082 10.76318 0.998004 3.555987
    IGWO 1.295817 2.982105 0.998004 0.635439
    F8 PSO 56.04584 96.30331 31.89847 17.4922
    GWO 4.181775 22.25851 5.68 × 10−14 6.871585
    IGWO 5.24 × 10−14 4.7 × 10−13 0 1.415671
    下载: 导出CSV

    表  4  路径点序列

    Table  4.   Path point sequence

    位置 d1/m θ2/(°) θ3/(°) θ4/(°) θ5/(°) θ6/(°) θ7/(°)
    A 1.1874 47.2280 −65.2963 −20.1557 85.8047 −47.3947 83.8156
    B 2.6150 0.8813 −49.8247 −45.1954 −9.97077 5.09677 0.06786
    C 2.4393 6.6172 −83.8267 −0.533756 49.7327 −8.6861 59.4064
    D 1.8821 47.2274 −65.2832 −20.1933 85.8270 −47.3923 83.8487
    E 1.0969 25.7134 −99.5115 17.6056 73.7020 −26.8743 71.8517
    F 0.8791 25.3446 −49.9048 19.7835 28.7049 −63.0295 13.9472
    G 0.9968 33.0464 −68.6310 53.4117 33.9881 −77.2882 8.4386
    H 1.0602 30.6196 −113.7357 41.3231 62.9544 −34.8809 58.1045
    下载: 导出CSV
  • [1] NAGY Á, VAJK I. Nonconvex time-optimal trajectory planning for robot manipulators[J]. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(11): 111007. doi: 10.1115/1.4044216
    [2] KIM J J, LEE J J. Trajectory optimization with particle swarm optimization for manipulator motion planning[J]. IEEE Transactions on Industrial Informatics, 2015, 11(3): 620-631. doi: 10.1109/TII.2015.2416435
    [3] XIDIAS E K. Time-optimal trajectory planning for hyper-redundant manipulators in 3D workspaces[J]. Robotics and Computer-integrated Manufacturing, 2018, 50: 286-298. doi: 10.1016/j.rcim.2017.10.005
    [4] LIU C, CAO G H, QU Y Y, et al. An improved PSO algorithm for time-optimal trajectory planning of Delta robot in intelligent packaging[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(3): 1091-1099.
    [5] MA J W, GAO S, YAN H T, et al. A new approach to time-optimal trajectory planning with torque and jerk limits for robot[J]. Robotics and Autonomous Systems, 2021, 140: 103744. doi: 10.1016/j.robot.2021.103744
    [6] 米根锁, 李明. 布谷鸟搜索算法在空间机械臂轨迹规划中的应用研究[J]. 机械科学与技术, 2018, 37(12): 1805-1810.

    MI G S, LI M. Applying cuckoo search algorithm to path planning of space manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1805-1810. (in Chinese)
    [7] WU L, CHEN M S, XU J T, et al. Minimum-acceleration local modification method for planning tool orientations in 5-axis ball-end machining[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(7): 2271-2287.
    [8] 梁常春, 张晓东, 唐自新, 等. 空间机械臂关节故障引起速度突变的抑制[J]. 宇航学报, 2016, 37(1): 48-54.

    LIANG C C, ZHANG X D, TANG Z X, et al. Suppression of velocity mutation caused by space manipulator joint failure[J]. Journal of Astronautics, 2016, 37(1): 48-54. (in Chinese)
    [9] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007
    [10] LI Y, LIN X X, LIU J S. An improved gray wolf optimization algorithm to solve engineering problems[J]. Sustainability, 2021, 13(6): 3208. doi: 10.3390/su13063208
    [11] NADIMI-SHAHRAKI M H, TAGHIAN S, MIRJALILI S. An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems with Applications, 2021, 166: 113917. doi: 10.1016/j.eswa.2020.113917
    [12] RODRÍGUEZ L, CASTILLO O, SORIA J. Grey wolf optimizer with dynamic adaptation of parameters using fuzzy logic[C]//2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver: IEEE, 2016: 3116-3123.
    [13] 左剑, 张程稳, 肖逸, 等. 基于灰狼优化算法的多机电力系统稳定器参数最优设计[J]. 电网技术, 2017, 41(9): 2987-2995.

    ZUO J, ZHANG C W, XIAO Y, et al. Multi-machine PSS parameter optimal tuning based on grey wolf optimizer algorithm[J]. Power System Technology, 2017, 41(9): 2987-2995. (in Chinese)
    [14] MIRJALILI S, GANDOMI A H. Chaotic gravitational constants for the gravitational search algorithm[J]. Applied Soft Computing, 2017, 53: 407-419. doi: 10.1016/j.asoc.2017.01.008
    [15] 吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学学报, 2021, 47(8): 1712-1720. doi: 10.13700/j.bh.1001-5965.2020.0298

    LYU X, MU X D, ZHANG J, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720. (in Chinese) doi: 10.13700/j.bh.1001-5965.2020.0298
    [16] XU H L, QIAN X, ZHANG L. Study of ACO algorithm optimization based on improved tent chaotic mapping[J]. Journal of Information & Computational Science, 2012, 9(6): 1653-1660.
    [17] ZHANG J Q, SANDERSON A C. JADE: adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945-958. doi: 10.1109/TEVC.2009.2014613
    [18] 曾念寅, 宋丹丹, 李寒, 等. 改进鲸鱼优化算法及涡轮盘结构优化[J]. 机械工程学报, 2021, 57(20): 254-265. doi: 10.3901/JME.2021.20.254

    ZENG N Y, SONG D D, LI H, et al. Improved whale optimization algorithm and turbine disk structure optimization[J]. Journal of Mechanical Engineering, 2021, 57(20): 254-265. (in Chinese) doi: 10.3901/JME.2021.20.254
    [19] 吴虎胜, 张凤鸣, 吴庐山. 一种新的群体智能算法-狼群算法[J]. 系统工程与电子技术, 2013, 35(11): 2430-2438.

    WU H S, ZHANG F M, WU L S. New swarm intelligence algorithm-wolf pack algorithm[J]. Systems Engineering and Electronics, 2013, 35(11): 2430-2438. (in Chinese)
    [20] TENG Z J, LV J L, GUO L W. An improved hybrid grey wolf optimization algorithm[J]. Soft Computing, 2019, 23(15): 6617-6631. doi: 10.1007/s00500-018-3310-y
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  33
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回