留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电主轴热补偿及轴承故障检测在热辐射测温方面的研究

李滨 彦成

李滨,彦成. 电主轴热补偿及轴承故障检测在热辐射测温方面的研究[J]. 机械科学与技术,2024,43(3):483-489 doi: 10.13433/j.cnki.1003-8728.20220279
引用本文: 李滨,彦成. 电主轴热补偿及轴承故障检测在热辐射测温方面的研究[J]. 机械科学与技术,2024,43(3):483-489 doi: 10.13433/j.cnki.1003-8728.20220279
LI Bin, YAN Cheng. Measuring Thermal Radiation Temperature of Motorized Spindle's Thermal Compensation and Bearing Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 483-489. doi: 10.13433/j.cnki.1003-8728.20220279
Citation: LI Bin, YAN Cheng. Measuring Thermal Radiation Temperature of Motorized Spindle's Thermal Compensation and Bearing Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 483-489. doi: 10.13433/j.cnki.1003-8728.20220279

电主轴热补偿及轴承故障检测在热辐射测温方面的研究

doi: 10.13433/j.cnki.1003-8728.20220279
基金项目: 哈尔滨市应用技术研究与开发项目(2017RALXJ011)
详细信息
    作者简介:

    李滨,副教授,博士,libinlibin1975@163.com

  • 中图分类号: TH133.3

Measuring Thermal Radiation Temperature of Motorized Spindle's Thermal Compensation and Bearing Fault Diagnosis

  • 摘要: 针对电主轴轴体的热变形以及重要零部件轴承在加工中心上的常见故障,提出基于收集电主轴温度变化的热误差实时补偿计算方法与轴承常见故障的诊断方法。热误差补偿方法可以通过对轴体上测温点数据的处理对电主轴单元进行实时的热误差补偿提高加工精度。故障诊断方法是对不同的温度节点设置不同的阈值,阈值对应着电主轴单元内部某些重要零件的故障特征,当节点温度变化超出阈值即进行报警以诊断具体零件的故障。促进了电主轴的智能化进程,为接下来的研究打下基础。
  • 图  1  工作原理

    Figure  1.  Working principle

    图  2  电主轴内部机械结构

    Figure  2.  Internal mechanical structure of electric spindle

    图  3  电主轴内部结构布局

    Figure  3.  Internal structural layout of electric spindle

    图  4  电主轴单元内部热源

    Figure  4.  Internal heat source of electric spindle unit

    图  5  内部温度分布

    Figure  5.  Internal temperature distribution

    图  6  外部温度分布

    Figure  6.  External temperature distribution

    图  7  电主轴内部结构简化

    Figure  7.  Simplified internal structure of electric spindle

    图  8  两节点间轴段温度分布

    Figure  8.  Temperature distribution in the axial section between two nodes

    图  9  电主轴测温节点分布

    Figure  9.  Distribution of temperature measurement nodes for electric spindle

    图  10  轴承失效归纳

    Figure  10.  Induction of bearing failure

    图  11  模拟试验台及仪器

    Figure  11.  Simulation test bench and instruments

    图  12  正常轴承工作轴体测温点温度变化对比

    Figure  12.  Comparison of temperature changes at temperature measurement points of normal bearing working shaft

    图  13  100 Hz故障轴承工作轴体节点温度变化对比

    Figure  13.  Comparison of temperature changes at the working shaft node of a 100 Hz faulty bearing

  • [1] JIANG Z Y, HUANG X Z, CHANG M X, et al. Thermal error prediction and reliability sensitivity analysis of motorized spindle based on Kriging model[J]. Engineering Failure Analysis, 2021, 127: 105558. doi: 10.1016/j.engfailanal.2021.105558
    [2] 邝锦祥, 万正海, 李锻能. 高速电主轴热误差实验与预测建模[J]. 机床与液压, 2020, 48(10): 65-69.

    KUANG J X, WAN Z H, LI F N. Thermal error experiment and prediction modeling for high-speed motorized spindle[J]. Machine Tool & Hydraulics, 2020, 48(10): 65-69. (in Chinese)
    [3] 沈志东. 基于ANSYS Workbench高速静压电主轴的热变形研究[J]. 农业装备与车辆工程, 2020, 58(12): 128-132. doi: 10.3969/j.issn.1673-3142.2020.12.029

    SHEN Z D. Research on thermal deformation of high-speed hydrostatic motorized spindle based on ANSYS workbench[J]. Agricultural Equipment and Vehicle Engineering, 2020, 58(12): 128-132. (in Chinese) doi: 10.3969/j.issn.1673-3142.2020.12.029
    [4] 叶钰, 袁江, 邱自学, 等. 高速电主轴热误差正交试验设计与分析[J]. 制造技术与机床, 2021(3): 133-139.

    YE Y, YUAN J, QIU Z X, et al. Orthogonal experimental design and analysis of thermal error of high speed motorized spindle[J]. Manufacturing Technology & Machine Tool, 2021(3): 133-139. (in Chinese)
    [5] 樊红卫, 张旭辉, 寇发荣, 等. 电主轴振动故障诊断与治愈研究进展[J]. 制造技术与机床, 2020(9): 56-59.

    FAN H W, ZHANG X H, KOU F R, et al. Research progress on vibration fault diagnosis and cure of motorized spindle[J]. Manufacturing Technology & Machine Tool, 2020(9): 56-59. (in Chinese)
    [6] 李滨, 曾辉. 改进的深度置信网络在电主轴故障诊断中的应用[J]. 机械科学与技术, 2021, 40(7): 1051-1057.

    LI B, ZENG H. Application of improved deep belief network in electric spindle fault diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1051-1057. (in Chinese)
    [7] 邹纯标. 浅谈电主轴在数控加工中心的应用[J]. 科技创新与应用, 2013(28): 31.

    ZOU C B. talking about the application of electric spindle in NC machining center[J]. Technology Innovation and Application, 2013(28): 31. (in Chinese)
    [8] 刘建平, 毕根凤. 电主轴电机的温度场建模研究[J]. 科技创新导报, 2019, 16(19): 117-118.

    LIU J P, BI G F. temperature field modeling of motorized spindle motor[J]. Science and Technology Innovation Herald, 2019, 16(19): 117-118. (in Chinese)
    [9] 李贺. 电主轴温度预测模型建立与实验研究[D]. 哈尔滨: 哈尔滨理工大学, 2021.

    LI H. The establishment and experimental research of the temperature Prediction model of motorized spindle[D]. Harbin: Harbin University of Technology, 2021. (in Chinese)
    [10] 陈洪容, 覃智广, 蒋世应, 等. 异步电主轴三维热误差多物理场耦合分析及计算[J]. 机械设计与制造, 2017(4): 152-155.

    CHEN H R, QIN Z G, JIANG S Y, et al. Multi-physics field coupling analysis and calculation of three-dimensional thermal error in asynchronous spindle motor[J]. Machinery Design & Manufacture, 2017(4): 152-155. (in Chinese)
    [11] 罗哉, 陆艺, 郭斌, 等. 圆柱轴类零件径向与轴向热变形异常现象研究[J]. 中国机械工程, 2012, 23(12): 1479-1481.

    LUO Z, LU Y, GUO B, et al. Study on abnormal phenomena of radial and axial thermal deformation of cylindrical parts[J]. China Mechanical Engineering, 2012, 23(12): 1479-1481. (in Chinese)
    [12] 俞谢琼. 多点温度测量系统及其在建筑方面的应用[J]. 森林工程, 2007, 23(2): 25-27.

    YU X Q. Multi-point temperature measurement system and its application in construction engineering[J]. Forest Engineering, 2007, 23(2): 25-27. (in Chinese)
    [13] 段明德, 代京, 王献民. 卧式加工中心主轴热变形数值计算[J]. 矿山机械, 2018, 46(5): 64-68. doi: 10.3969/j.issn.1001-3954.2018.05.014

    DUAN M D, DAI J, WANG X M. Numerical calculation on thermal deformation of spindle in horizontal machining center[J]. Mining & Processing Equipment, 2018, 46(5): 64-68. (in Chinese) doi: 10.3969/j.issn.1001-3954.2018.05.014
    [14] 李树森, 元月, 王也. 基于Matlab的径向小孔节流静压气体轴承静态特性分析[J]. 森林工程, 2016, 32(2): 49-52. doi: 10.3969/j.issn.1001-005X.2016.02.011

    LI S S, YUAN Y, WANG Y. Analysis of static characteristics of orifice radial static pressure gas bearing under high pressure based on matlab[J]. Forest Engineering, 2016, 32(2): 49-52. (in Chinese) doi: 10.3969/j.issn.1001-005X.2016.02.011
    [15] 马旭, 白广臣, 邱杨. 1000MW汽轮发电机轴承温度高故障分析及处理[J]. 电力与能源, 2021, 42(2): 231-234.

    MA X, BAI G C, QIU Y. Fault analysis and treatment for high bearing temperature of 1000 MW turbo-generator[J]. Power Energy, 2021, 42(2): 231-234. (in Chinese)
    [16] 于学华. 小波分析在信号检测、控制系统故障诊断中的应用浅析[J]. 森林工程, 2002, 18(5): 35-36.

    YU X H. Fault diagnosis and signal detection of control system using wavelet analysis[J]. Forest Engineering, 2002, 18(5): 35-36. (in Chinese)
    [17] 邓召文, 杨泽宇, 张书乾, 等. 基于LabVIEW的汽车悬架无线动态数据采集系统[J]. 森林工程, 2018, 34(5): 106-113.

    DENG Z W, YANG Z Y, ZHANG S Q, et al. Design of the wireless dynamic data acquisition system for automobile suspension based on LabVIEW[J]. Forest Engineering, 2018, 34(5): 106-113. (in Chinese)
    [18] WANG Z N, ZHANG K, WANG Z, et al. Research on vibration of ceramic motorized spindle influenced by interference and thermal displacement[J]. Journal of Mechanical Science and Technology, 2021, 35(6): 2325-2335. doi: 10.1007/s12206-021-0505-4
  • 加载中
图(13)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-13
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回