留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

7075铝合金喷丸参数影响的数值仿真及实验研究

汪东明 单以才 孟龙晖

汪东明,单以才,孟龙晖. 7075铝合金喷丸参数影响的数值仿真及实验研究[J]. 机械科学与技术,2024,43(3):466-473 doi: 10.13433/j.cnki.1003-8728.20220277
引用本文: 汪东明,单以才,孟龙晖. 7075铝合金喷丸参数影响的数值仿真及实验研究[J]. 机械科学与技术,2024,43(3):466-473 doi: 10.13433/j.cnki.1003-8728.20220277
WANG Dongming, SHAN Yicai, MENG Longhui. Numerical Simulation and Experimental Study on Influence of Shot Peening Parameters of 7075 Aluminum Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 466-473. doi: 10.13433/j.cnki.1003-8728.20220277
Citation: WANG Dongming, SHAN Yicai, MENG Longhui. Numerical Simulation and Experimental Study on Influence of Shot Peening Parameters of 7075 Aluminum Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 466-473. doi: 10.13433/j.cnki.1003-8728.20220277

7075铝合金喷丸参数影响的数值仿真及实验研究

doi: 10.13433/j.cnki.1003-8728.20220277
基金项目: 江苏省青年基金项目(BK20190676)与江苏省高校自然科学基金项目(19KJB460019)
详细信息
    作者简介:

    汪东明,副教授,993139886@qq.com

    通讯作者:

    孟龙晖,讲师,博士,menglonghui@njtech.edu.cn

  • 中图分类号: TG146.21

Numerical Simulation and Experimental Study on Influence of Shot Peening Parameters of 7075 Aluminum Alloy

  • 摘要: 为探究7075铝合金喷丸加工过程中不同喷丸参数对于喷丸结果的影响,本文基于Abaqus软件对相应的喷丸过程进行了有限元仿真,观察不同喷丸参数对于表面残余应力分布、表面粗糙度以及表面三维形貌的影响,同时基于实验过程对相应的喷丸过程进行研究,并对仿真和实验所得到的结果进行对比,最终发现,虽然在具体数值上两者之间存在一定的差距,但在变化趋势上两者呈现较为明显的一致性。因此,可以认为两者的分析结果是较为可信的,同时得出在单纯调整弹丸尺寸和弹丸速度的条件下,表面残余应力和表面粗糙度两者难以同时兼顾,但是喷丸覆盖率的提高可以用降低生产效率为成本较好的兼顾这两方面。
  • 图  1  喷丸过程示意图

    Figure  1.  Schematic diagram of the shot blasting process

    图  2  不同喷丸覆盖率示意图

    Figure  2.  Schematic diagram of different shot blasting coverage rates

    图  3  不同喷丸覆盖率仿真结果

    Figure  3.  Simulation results for different shot blasting coverage rates

    图  4  不同喷丸速度下表面残余应力的分布

    Figure  4.  Distribution of surface residual stresses at different shot blasting velocities

    图  5  不同喷丸速度仿真下零件表面的三维形貌提取图

    Figure  5.  Extraction of three-dimensional surface topography for the component simulated at different shot blasting velocities

    图  6  不同喷丸速度下零件表面粗糙度变化趋势

    Figure  6.  Surface roughness variation trend for the component at different shot blasting velocities

    图  7  不同喷丸覆盖率下表面残余应力的分布

    Figure  7.  Distribution of surface residual stresses at different shot blasting coverage rates

    图  8  不同喷丸覆盖率仿真下零件表面的三维形貌提取图

    Figure  8.  Extraction of three-dimensional surface topography for the component simulated at different shot blasting coverage rates

    图  9  不同喷丸覆盖率下零件表面粗糙度变化趋势

    Figure  9.  Surface roughness variation trend for the component at different shot blasting coverage rates

    图  10  不同弹丸直径下表面残余应力的分布

    Figure  10.  Distribution of surface residual stresses at different shot diameter

    图  11  不同喷丸覆盖率仿真下零件表面的三维形貌提取图

    Figure  11.  Extraction of three-dimensional surface topography for the component simulated at different shot blasting coverage rates

    图  12  不同弹丸直径下零件表面粗糙度变化趋势

    Figure  12.  Surface roughness variation trend for the component at different shot diameter

    图  13  喷丸实验过程和结果

    Figure  13.  Shot blasting experimental processes and results

    图  14  喷丸表面三维形貌提取

    Figure  14.  Extraction of three-dimensional surface topography of the shot blasted surface

    图  15  粗糙度仿真结果和实验结果对比

    Figure  15.  Comparison of surface roughness simulation results with experimental results

    图  16  不同弹丸直径下表面残余应力分布的实验结果

    Figure  16.  Experimental results on surface residual stress distribution at different shot diameters

    表  1  7075铝合金Johnson-Cook本构模型参数[12]

    Table  1.   Parameters for the Johnson-Cook constitutive model of 7075 aluminium alloy[12]

    A/
    MPa
    B/
    MPa
    C n m $ {\dot {\bar{{\varepsilon }}}_{0}} $ Tmelt/
    Troom/
    448 476 0.0012 0.39 1.29 0.0001 635 25
    下载: 导出CSV
  • [1] LIAO D, ZHU S P, KESHTEGAR B, et al. Probabilistic framework for fatigue life assessment of notched components under size effects[J]. International Journal of Mechanical Sciences, 2020, 181: 105685. doi: 10.1016/j.ijmecsci.2020.105685
    [2] ADU-GYAMFI S, REN X D, LARSON E A, et al. The effects of laser shock peening scanning patterns on residual stress distribution and fatigue life of AA2024 aluminium alloy[J]. Optics & Laser Technology, 2018, 108: 177-185.
    [3] MALEKI E, UNAL O, KASHYZADEH K R. Efficiency analysis of shot peening parameters on variations of hardness, grain size and residual stress via Taguchi approach[J]. Metals and Materials International, 2019, 25(6): 1436-1447. doi: 10.1007/s12540-019-00290-7
    [4] MALEKI E, UNAL O, GUAGLIANO M, et al. Analysing the fatigue behaviour and residual stress relaxation of gradient Nano-structured 316L steel subjected to the shot peening via deep learning approach[J]. Metals and Materials International, 2022, 28(1): 112-131. doi: 10.1007/s12540-021-00995-8
    [5] 李克, 朱文龙, 宋逸思, 等. 复合喷丸对0Cr16Ni5Mo1马氏体不锈钢表面组织和性能的影响[J]. 理化检验-物理分册, 2021, 57(12): 32-37.

    LI K, ZHU W L, SONG Y S, et al. Effects of composite shot peening on surface microstructure and properties of 0Cr16Ni5Mo1 martensitic stainless steel[J]. PhysicalTesting and Chemical Analysis Part A: Physical Testing, 2021, 57(12): 32-37. (in Chinese)
    [6] 陈李学, 蒋建军, 李伟刚, 等. 切削工艺对7075铝合金喷丸效果的影响[J]. 材料保护, 2021, 54(11): 104-107. doi: 10.3969/j.issn.1001-1560.2021.11.clbh202111018

    CHEN L X, JIANG J J, LI W G, et al. Effect of cutting process on shot peening of 7075 aluminum alloy[J]. Materials Protection, 2021, 54(11): 104-107. (in Chinese) doi: 10.3969/j.issn.1001-1560.2021.11.clbh202111018
    [7] 蔡晋, 谢广安, 闫雪, 等. TC4钛合金超声喷丸强化覆盖率试验与数值分析[J]. 航空制造技术, 2021, 64(19): 30-36. doi: 10.16080/j.issn1671-833x.2021.19.030

    CAI J, XIE G A, YAN X, et al. Experimental and numerical analysis of coverage of TC4 titanium alloy by ultrasonic shot peening[J]. Aeronautical Manufacturing Technology, 2021, 64(19): 30-36. (in Chinese) doi: 10.16080/j.issn1671-833x.2021.19.030
    [8] SOYAMA H, CHIGHIZOLA C R, HILL M R. Effect of compressive residual stress introduced by cavitation peening and shot peening on the improvement of fatigue strength of stainless steel[J]. Journal of Materials Processing Technology, 2021, 288: 116877. doi: 10.1016/j.jmatprotec.2020.116877
    [9] WU J Z, WEI P T, LIU H J, et al. Effect of shot peening intensity on surface integrity of 18CrNiMo7-6 steel[J]. Surface and Coatings Technology, 2021, 421: 127194. doi: 10.1016/j.surfcoat.2021.127194
    [10] MARTÍN V, VÁZQUEZ J, NAVARRO C, et al. Effect of shot peening residual stresses and surface roughness on fretting fatigue strength of Al 7075-T651[J]. Tribology International, 2020, 142: 106004. doi: 10.1016/j.triboint.2019.106004
    [11] LIU X, LIU J X, ZUO Z X, et al. Numerical study on residual stress redistribution of shot-peened aluminum 7075-T6 under fretting loading[J]. International Journalof Mechanical Sciences, 2019, 160: 156-164. doi: 10.1016/j.ijmecsci.2019.06.031
    [12] MALI R A, AGRAHARI M D, GUPTA T V K. FE based simulation and experimental validation of forces in dry turning of aluminium 7075[J]. Materials Today:Proceedings, 2020, 27: 2319-2323. doi: 10.1016/j.matpr.2019.09.120
    [13] XIE L C, ZHANG J, XIONG C B, et al. Investigation on experiments and numerical modelling of the residual stress distribution in deformed surface layer of Ti-6Al-4V after shot peening[J]. Materials & Design, 2012, 41: 314-318.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  19
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-09
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回