留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进粒子群算法的自动充电机械臂时间最优轨迹研究

朱浩 赵清海 郑群锋 宁长久

朱浩,赵清海,郑群锋, 等. 改进粒子群算法的自动充电机械臂时间最优轨迹研究[J]. 机械科学与技术,2024,43(3):423-429 doi: 10.13433/j.cnki.1003-8728.20220271
引用本文: 朱浩,赵清海,郑群锋, 等. 改进粒子群算法的自动充电机械臂时间最优轨迹研究[J]. 机械科学与技术,2024,43(3):423-429 doi: 10.13433/j.cnki.1003-8728.20220271
ZHU Hao, ZHAO Qinghai, ZHENG Qunfeng, NING Changjiu. Exploring Time-optimal Trajectory of Automatic Charging Manipulator with Improved Particle Swarm Optimization Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 423-429. doi: 10.13433/j.cnki.1003-8728.20220271
Citation: ZHU Hao, ZHAO Qinghai, ZHENG Qunfeng, NING Changjiu. Exploring Time-optimal Trajectory of Automatic Charging Manipulator with Improved Particle Swarm Optimization Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 423-429. doi: 10.13433/j.cnki.1003-8728.20220271

改进粒子群算法的自动充电机械臂时间最优轨迹研究

doi: 10.13433/j.cnki.1003-8728.20220271
基金项目: 国家自然科学基金项目(52175236)
详细信息
    作者简介:

    朱浩,硕士研究生,1448346371@qq.com

    通讯作者:

    赵清海,副教授,博士,zqhbit@163.com

  • 中图分类号: TH122

Exploring Time-optimal Trajectory of Automatic Charging Manipulator with Improved Particle Swarm Optimization Algorithm

  • 摘要: 针对桁架充电机械臂关节空间轨迹规划的时间优化问题,提出了一种非线性动态学习因子的粒子群算法。通过运动学分析获取工作空间,引入3-5-3多项式插值进行轨迹规划。结合运动过程中的速度与加速度约束,寻求运动过程中的最短时间。对比改进粒子群算法和基本粒子群算法的收敛速度,分析各关节优化前后运动时间的变化情况,并进行仿真实验验证。结果表明:改进粒子群算法的收敛性能较基本粒子群算法更快,整体运动时间缩短约33%,证实改进粒子群算法的可行性。
  • 图  1  桁架充电机械臂三维模型

    Figure  1.  Three-dimensional model of truss charging arm

    图  2  桁架充电机器人改进D-H坐标系

    Figure  2.  Improved D-H coordinate system for trusscharging robot

    图  3  桁架充电机机械臂工作区域分析

    Figure  3.  Analysis of the working area of the truss charging arm

    图  4  改进粒子群轨迹时间优化流程图

    Figure  4.  Improved particle swarm trajectory time optimization flow chart

    图  5  桁架充电机械臂时间优化实验平台

    Figure  5.  Experimental platform for time optimization of truss charging robot arm

    图  6  桁架充电机械臂运动学三维模型

    Figure  6.  Three dimensional kinematic model of truss charging robotic arm

    图  7  关节1 ~ 5最优粒子位置迭代各曲线时间分布

    Figure  7.  Time distribution of the optimal particle position iteration curves for joints 1-5

    图  8  关节1 ~ 5的两种算法收敛过程对比图

    Figure  8.  Comparison of convergence processes between two algorithms for joints 1-5

    图  9  优化前后位置、速度与加速度对比

    Figure  9.  Comparison of position, velocity, and acceleration before and after optimization

    图  10  实验与仿真时间优化结果对比图

    Figure  10.  Comparison of experimental and simulation time optimization results

    表  1  D-H参数表

    Table  1.   D-H parameters

    关节 ${\theta _i}$ di ai−1 ${\alpha _{i - 1}}$ qi
    1 −90° 0 0 −90° d1
    2 90° 0 0 90° d2
    3 −90° 0 0 −90° d3
    4 0 0.03 m 0 0 q4
    5 0 0.10 m 0 90° q5
    下载: 导出CSV

    表  2  各关节空间运动变量插值点

    Table  2.   Interpolation points of motion variables in each joint space

    关节 初始点 路径点1 路径点2 终止点
    1 0 0.8 m 1.7 m 2.5 m
    2 0 1.05 m 2.10 m 2.75 m
    3 0 0.6 m 1.1 m 1.8 m
    4 0 18° 36° 90°
    5 0 15° 40° 90°
    下载: 导出CSV
  • [1] 郭勇, 赖广. 工业机器人关节空间轨迹规划及优化研究综述[J]. 机械传动, 2020, 44(2): 154-165.

    GUO Y, LAI G. Review of joint space trajectory planning and optimization for industrial robot[J]. Journal of Mechanical Transmission, 2020, 44(2): 154-165. (in Chinese)
    [2] 庞飞. 工业机器人二次最优轨迹规划算法研究[D]. 沈阳: 东北大学, 2014: 3-4.

    PANG F. Research on quadratic optimal trajectory planning algorithm for industrial robot[D]. Shenyang: Northeastern University, 2014: 3-4. (in Chinese)
    [3] CHOI Y K, PARK J H, KIM H S, et al. Optimal trajectory planning and sliding mode control for robots using evolution strategy[J]. Robotica, 2000, 18(4): 423-428. doi: 10.1017/S0263574799002118
    [4] 李黎, 尚俊云, 冯艳丽, 等. 关节型工业机器人轨迹规划研究综述[J]. 计算机工程与应用, 2018, 54(5): 36-50. doi: 10.3778/j.issn.1002-8331.1712-0116

    LI L, SHANG J Y, FENG Y L, et al. A Research of trajectory planning for articulated industrial robot: a review[J]. Computer Engineering and Applications, 2018, 54(5): 36-50. (in Chinese) doi: 10.3778/j.issn.1002-8331.1712-0116
    [5] 王永琦, 江潇潇. 基于混合灰狼算法的机器人路径规划[J]. 计算机工程与科学, 2020, 42(7): 1294-1301. doi: 10.3969/j.issn.1007-130X.2020.07.019

    WANG Y Q, JIANG X X. Robot path planning using a hybrid grey wolf optimization algorithm[J]. Computational Engineering and Science, 2020, 42(7): 1294-1301. (in Chinese) doi: 10.3969/j.issn.1007-130X.2020.07.019
    [6] LAMINI C, BENHLIMA S, ELBEKRI A. Genetic algorithm based approach for autonomous mobile robot path planning[J]. Procedia Computer Science, 2018, 127: 180-189. doi: 10.1016/j.procs.2018.01.113
    [7] 张震, 方群, 宋金丰, 等. 基于协同粒子群算法的航天器集群动态路径规划算法研究[J]. 西北工业大学学报, 2021, 39(6): 1222-1232. doi: 10.3969/j.issn.1000-2758.2021.06.007

    ZHANG Z, FANG Q, SONG J F, et al. Research on dynamic path planning algorithm of spacecraft cluster based on cooperative particle swarm algorithm[J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1222-1232. (in Chinese) doi: 10.3969/j.issn.1000-2758.2021.06.007
    [8] LUO Q, WANG H B, ZHENG Y, et al. Research on path planning of mobile robot based on improved ant colony algorithm[J]. Neural Computing and Applications, 2020, 32(6): 1555-1566. doi: 10.1007/s00521-019-04172-2
    [9] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.

    TIAN X H, ZHANG J H, LI Y. An adaptive annealing particle swarm optimization based on chaotic mapping[J]. Complex Systems and Complexity Science, 2020, 17(1): 45-54. (in Chinese)
    [10] 陈波, 刘有余. 双种群粒子群算法的时间最优轨迹规划研究[J]. 机械科学与技术, 2022, 41(10): 1530-1535.

    CHEN B, LIU Y Y. Research on time optimal trajectory planning for double-population particle swarm optimization algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(10): 1530-1535. (in Chinese)
    [11] 巫光福, 万路萍. 粒子群算法优化机器人路径规划的研究[J]. 机械科学与技术, 2022, 41(11): 1759-1764.

    WU G F, WAN L P. Research on improved particle swarm optimization algorithm for robot path planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1759-1764. (in Chinese)
    [12] 李东洁, 邱江艳, 尤波. 一种机器人轨迹规划的优化算法[J]. 电机与控制学报, 2009, 13(1): 123-127. doi: 10.3969/j.issn.1007-449X.2009.01.023

    LI D J, QIU J Y, YOU B. Optimal algorithm for trajectory planning of the robot[J]. Electric Machines and Control, 2009, 13(1): 123-127. (in Chinese) doi: 10.3969/j.issn.1007-449X.2009.01.023
    [13] 邓伟, 张其万, 刘平, 等. 基于双种群遗传混沌优化算法的最优时间轨迹规划[J]. 计算机集成制造系统, 2018, 24(1): 101-106.

    DENG W, ZHANG Q W, LIU P, et al. Optimal time trajectory planning based on dual population genetic and chaotic optimization algorithm[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 101-106. (in Chinese)
    [14] JIN X, KANG J F, ZHANG J J, et al. Trajectory planning of a six-DOF robot based on a hybrid optimization algorithm[C]//Proceeding of the 9th International Symposium on Computational Intelligence and Design. Hangzhou, China: IEEE, 2016: 148-151.
    [15] 臧继元, 刁燕, 陈勇. 七自由度微创手术机器人运动学及其工作空间分析[J]. 机械设计与制造, 2010(2): 181-183. doi: 10.3969/j.issn.1001-3997.2010.02.073

    ZANG J Y, DIAO Y, CHEN Y. The kinematics and workspace analysis of a seven DOF minimally invasive surgical robot[J]. Machinery Design & Manufacture, 2010(2): 181-183. (in Chinese) doi: 10.3969/j.issn.1001-3997.2010.02.073
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  20
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-05
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回