留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贝叶斯优化TQWT参数在轴承故障诊断中的应用

张乐 彭先龙 朱华双

张乐,彭先龙,朱华双. 贝叶斯优化TQWT参数在轴承故障诊断中的应用[J]. 机械科学与技术,2024,43(3):504-512 doi: 10.13433/j.cnki.1003-8728.20220270
引用本文: 张乐,彭先龙,朱华双. 贝叶斯优化TQWT参数在轴承故障诊断中的应用[J]. 机械科学与技术,2024,43(3):504-512 doi: 10.13433/j.cnki.1003-8728.20220270
ZHANG Le, PENG Xianlong, ZHU Huashuang. Applying Bayesian Optimization of Parameters of Tunable Quality-Factor Wavelet Transform to Bearing Fault[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 504-512. doi: 10.13433/j.cnki.1003-8728.20220270
Citation: ZHANG Le, PENG Xianlong, ZHU Huashuang. Applying Bayesian Optimization of Parameters of Tunable Quality-Factor Wavelet Transform to Bearing Fault[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 504-512. doi: 10.13433/j.cnki.1003-8728.20220270

贝叶斯优化TQWT参数在轴承故障诊断中的应用

doi: 10.13433/j.cnki.1003-8728.20220270
基金项目: 陕西省自然科学基础研究计划(2020JM-521)
详细信息
    作者简介:

    张乐,讲师,博士,le_zhang_1983@126.com

  • 中图分类号: TH17

Applying Bayesian Optimization of Parameters of Tunable Quality-Factor Wavelet Transform to Bearing Fault

  • 摘要: 针对可调品质因子小波变换( Tunable Q-factor wavelet trans-form,TQWT)采用网格搜索和优化算法调参存在评估计算代价高的问题,提出基于贝叶斯优化TQWT参数的故障诊断算法。通过贝叶斯优化算法在TQWT参数空间内求取熵-峭综合目标函数最优解,据此设置TQWT参数分解轴承故障信号,选择熵-峭指标最小值对应子带信号,经TQWT逆变换后进行包络解调分析,最终由重构信号包络谱判别轴承故障类型。仿真实验和实测轴承信号分析表明,该算法可以准确提取轴承故障特征频率信息,实现早期故障诊断。
  • 图  1  贝叶斯优化过程

    Figure  1.  Bayesian optimization process

    图  2  仿真信号时域波形及组成成分

    Figure  2.  Time domain waveform and components of simulated signals

    图  3  仿真信号Hilbert包络谱

    Figure  3.  Hilbert envelope spectrum of simulated signal

    图  4  目标函数变化过程

    Figure  4.  Objective function variation processes

    图  5  最显著特征子带选择结果

    Figure  5.  The most significant feature subband selection results

    图  6  提取故障特征时域波形与原冲击特征对比

    Figure  6.  Comparison of extracted fault characteristic time domain waveform with original impact characteristics

    图  7  提取故障特征Hilbert包络谱(f=20 Hz)

    Figure  7.  Extracting Hilbert envelope spectrum of fault characteristics (f=20 Hz)

    图  8  轴承故障信号时域波形

    Figure  8.  Time domain waveform of bearing fault signal

    图  9  目标函数变化过程

    Figure  9.  Objective function variation process of inner ring fault signals

    图  10  最显著特征子带选择结果

    Figure  10.  The most significant feature subband selection results of inner ring fault signals

    图  11  故障特征提取结果

    Figure  11.  Fault feature extraction results of inner ring fault signals

    图  12  1号轴承位置[16]

    Figure  12.  Position of bearing 1[16]

    图  13  1号轴承振动信号均方根值变化趋势

    Figure  13.  Root mean square (RMS) value variation trend of vibration signals of bearing 1

    图  14  目标函数变化过程

    Figure  14.  Objective function variation process of outer ring fault signals

    图  15  最显著特征子带选择结果

    Figure  15.  The most significant feature subband selection results of outer ring fault signals

    图  16  故障特征提取结果(f = 235 Hz)

    Figure  16.  Fault feature extraction results of outer ring (f = 235 Hz)

    图  17  以平均香农熵为目标函数提取故障特征

    Figure  17.  Utilizing average Shannon entropy as objective function for fault feature extraction

    图  18  以峭度为目标函数提取故障特征

    Figure  18.  Extracting fault features with kurtosis as objective function

  • [1] SELESNICK I W. Wavelet transform with tunable Q-factor[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3560-3575. doi: 10.1109/TSP.2011.2143711
    [2] 孔运, 王天杨, 褚福磊. 自适应TQWT滤波器算法及其在冲击特征提取中的应用[J]. 振动与冲击, 2019, 38(11): 9-16.

    KONG Y, WANG T Y, CHU F L. Adaptive TQWT filter algorithm and its application in impact feature extraction[J]. Journal of Vibration and Shock, 2019, 38(11): 9-16. (in Chinese)
    [3] 贺王鹏, 訾艳阳, 陈彬强, 等. 周期稀疏导向超小波在风力发电设备发电机轴承故障诊断中的应用[J]. 机械工程学报, 2016, 52(3): 41-48. doi: 10.3901/JME.2016.03.041

    HE W P, ZI Y Y, CHEN B Q, et al. Periodic sparsity oriented super-wavelet analysis with application to motor bearing fault detection of wind turbine[J]. Journal of Mechanical Engineering, 2016, 52(3): 41-48. (in Chinese) doi: 10.3901/JME.2016.03.041
    [4] 任学平, 黄慧杰, 王朝阁, 等. 改进的TQWT在滚动轴承早期故障诊断的应用[J]. 振动、测试与诊断, 2020, 40(2): 317-325.

    REN X P, HUANG H J, WANG C G, et al. Application of improved TQWT in early fault diagnosis of rolling bearing[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(2): 317-325. (in Chinese)
    [5] 唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81.

    TANG G J, WANG X L. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi′an Jiaotong University, 2015, 49(5): 73-81. (in Chinese)
    [6] 刘嘉敏, 彭玲, 刘军委, 等. 遗传算法VMD参数优化与小波阈值轴承振动信号去噪分析[J]. 机械科学与技术, 2017, 36(11): 1695-1700.

    LIU J M, PENG L, LIU J W, et al. Denoising analysis of bearing vibration signal based on genetic algorithm and wavelet threshold VMD[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(11): 1695-1700. (in Chinese)
    [7] 王振亚, 姚立纲, 戚晓利, 等. 参数优化变分模态分解与多域流形学习的行星齿轮箱故障诊断[J]. 振动与冲击, 2021, 40(1): 110-118.

    WANG Z Y, YAO L G, QI X L, et al. Fault diagnosis of planetary gearbox based on parameter optimized VMD and multi-domain manifold learning[J]. Journal of Vibration and Shock, 2021, 40(1): 110-118. (in Chinese)
    [8] SHAHRIARI B, SWERSKY K, WANG Z Y, et al. Taking the human out of the loop: A review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148-175. doi: 10.1109/JPROC.2015.2494218
    [9] 崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018, 29(10): 3068-3090.

    CUI J X, YANG B. Survey on Bayesian optimization methodology and applications[J]. Journal of Software, 2018, 29(10): 3068-3090. (in Chinese)
    [10] 任婷玉, 梁中耀, 刘永, 等. 基于贝叶斯优化的三维水动力-水质模型参数估值方法[J]. 环境科学学报, 2019, 39(6): 2024-2032.

    REN T Y, LIANG Z Y, LIU Y, et al. The parameters estimation method based on Bayesian optimization for complex water quality models[J]. Acta Scientiae Circumstantiae, 2019, 39(6): 2024-2032. (in Chinese)
    [11] 常淼, 沈艳霞. 基于贝叶斯优化CNN的风电轴承故障诊断策略[J]. 噪声与振动控制, 2021, 41(6): 77-83.

    CHANG M, SHEN Y X. Fault diagnosis strategy of wind turbine bearings based on Bayesian optimized CNN[J]. Noise and Vibration Control, 2021, 41(6): 77-83. (in Chinese)
    [12] 石怀涛, 尚亚俊, 白晓天, 等. 基于贝叶斯优化的SWDAE-LSTM滚动轴承早期故障预测方法研究[J]. 振动与冲击, 2021, 40(18): 286-297.

    SHI H T, SHANG Y J, BAI X T, et al. Early fault prediction method combining SWDAE and LSTM for rolling bearings based on Bayesian optimization[J]. Journal of Vibration and Shock, 2021, 40(18): 286-297. (in Chinese)
    [13] MOCKUS J. Bayesian approach to global optimization: theory and applications[M]. Dordrecht: Springer, 1989.
    [14] 张龙, 易剑昱, 熊国良, 等. MED与TQWT相结合的滚动轴承早期故障特征提取[J]. 机械科学与技术, 2021, 40(6): 863-869.

    ZHANG L, YI J Y, XIONG G L, et al. Incipient fault feature extraction for rolling bearings combined with MED and TQWT[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 863-869. (in Chinese)
    [15] 张龙, 毛志德, 杨世锡, 等. 基于包络谱带通峭度的改进谱峭度方法及在轴承诊断中的应用[J]. 振动与冲击, 2018, 37(23): 171-179.

    ZHANG L, MAO Z D, YANG S X, et al. An improved Kurtogram based on band-pass envelope spectral Kurtosis with its application in bearing fault diagnosis[J]. Journal of Vibration and Shock, 2018, 37(23): 171-179. (in Chinese)
    [16] 何勇, 王红, 谷穗. 一种基于遗传算法的VMD参数优化轴承故障诊断新方法[J]. 振动与冲击, 2021, 40(6): 184-189.

    HE Y, WANG H, GU S. New fault diagnosis approach for bearings based on parameter optimized VMD and genetic algorithm[J]. Journal of Vibration and Shock, 2021, 40(6): 184-189. (in Chinese)
    [17] 项巍巍, 蔡改改, 樊薇, 等. 基于双调Q小波变换的瞬态成分提取及轴承故障诊断应用研究[J]. 振动与冲击, 2015, 34(10): 34-39.

    XIANG W W, CAI G G, FAN W, et al. Transient feature extraction based on double-TQWT and its application in bearing fault diagnosis[J]. Journal of Vibration and Shock, 2015, 34(10): 34-39. (in Chinese)
  • 加载中
图(18)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-02
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回