留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分形及规则布置方柱绕流场及气动噪声特性数值研究

陈武 韩斐 周毅

陈武,韩斐,周毅. 分形及规则布置方柱绕流场及气动噪声特性数值研究[J]. 机械科学与技术,2024,43(3):380-393 doi: 10.13433/j.cnki.1003-8728.20220268
引用本文: 陈武,韩斐,周毅. 分形及规则布置方柱绕流场及气动噪声特性数值研究[J]. 机械科学与技术,2024,43(3):380-393 doi: 10.13433/j.cnki.1003-8728.20220268
CHEN Wu, HAN Fei, ZHOU Yi. Numerical Simulation of Turbulent Flows and Induced Aerodynamic Noise Around Side-by-side Square Cylinders with Multiscale and Regular Arrangements[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 380-393. doi: 10.13433/j.cnki.1003-8728.20220268
Citation: CHEN Wu, HAN Fei, ZHOU Yi. Numerical Simulation of Turbulent Flows and Induced Aerodynamic Noise Around Side-by-side Square Cylinders with Multiscale and Regular Arrangements[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 380-393. doi: 10.13433/j.cnki.1003-8728.20220268

分形及规则布置方柱绕流场及气动噪声特性数值研究

doi: 10.13433/j.cnki.1003-8728.20220268
基金项目: 气动噪声控制重点实验室研究基金项目(ANCL20200104)
详细信息
    作者简介:

    陈武,硕士,13106199675@163.com

    通讯作者:

    周毅,教授,博士生导师,yizhou@njust.edu.cn

  • 中图分类号: TK40

Numerical Simulation of Turbulent Flows and Induced Aerodynamic Noise Around Side-by-side Square Cylinders with Multiscale and Regular Arrangements

  • 摘要: 采用大涡模拟并结合K-FWH声比拟方法对两种具有相同阻塞率的方柱布置(规则布置和分形布置)流场进行数值模拟研究。首先利用前人的单方柱绕流实验和数值结果对本文所使用的大涡模拟方法进行验证,结果表明本文所采用的数值方法能较好的预测绕流问题的湍流特性。研究发现在雷诺数为104,两类布置方柱尾流场平均阻力系数大致相等。规则布置方柱尾流场旋涡脱落呈现明显的“相位锁定”现象,而分形布置方柱尾流场旋涡脱落杂乱无序。与此同时,声学仿真结果表明两类流场的远场声压级指向分布大致相同。规则布置方柱流场中的噪声呈现“相位锁定”现象,分形布置方柱流场能够改变噪声频谱特性,使低频噪声向高频噪声转移。
  • 图  1  两种布置方柱的示意图

    Figure  1.  Two kinds of square column layout diagram

    图  2  X-Y平面上的单方柱计算网格

    Figure  2.  Computational grids in the X-Y plane for a single square cylinder

    图  3  无量纲平均流向速度在中心线的流向演化

    Figure  3.  Streamwise evolution of the normalized mean stream-wise velocity u1/Uin along the centerline

    图  4  均方根速度沿中心线的流向演化

    Figure  4.  Streamwise evolution of all three rms velocities along the centerline

    图  5  不同雷诺数Rein下的平均阻力系数CD

    Figure  5.  Mean drag coefficient CD at different Rein

    图  6  单方柱4个面上的平均压力系数CP分布

    Figure  6.  Distribution of the mean pressure coefficient CP over 4 sides of a single square cylinder

    图  7  不同雷诺数Rein下的平均阻力系数与平均升力系数均方根值之比$C_D' / C_L'$

    Figure  7.  The ratio of the mean drag coefficient to the mean lift coefficient rms $C_D' / C_L' $ at different Rein

    图  8  观测点处的声压级功率谱密度

    Figure  8.  Power spectral density of sound pressure level at observation points

    图  9  X-Y平面上的瞬时涡量等值面云图

    Figure  9.  Contour plots of the magnitude of instantaneous vorti-city in the X-Y plane

    图  10  Q值瞬时等值面图(Q$T_{\mathrm{Bar}}^2 /U_{\mathrm{in}}^2 $=1)

    Figure  10.  Instantaneous isosurfaces of Q-value (Q$T_{\mathrm{Bar}}^2 /U_{\mathrm{in}}^2 $=1)

    图  11  无量纲平均流向速度场$u_{1} / U_{{\mathrm{in}}}$云图

    Figure  11.  Contour plots of the normalized mean streamwise velocity field ($u_{1} / U_{{\mathrm{in}}}$)

    图  12  无量纲均方根速度$u_{1}'/ U_{{\rm{in}}}$云图

    Figure  12.  Contour plots of the normalized RMS velocity ($u_{1}'/ U_{{\rm{in}}}$)

    图  13  无量纲平均压力场(P−Pin)/(0.5ρ$U_{{\mathrm{in}}}^2 $)云图

    Figure  13.  Contour plots of the normalized mean pressure field (P−Pin)/(0.5ρ$U_{{\mathrm{in}}}^2 $)

    图  14  无量纲化平均流向速度u1/Uin的法向分布

    Figure  14.  Vertical distribution of the normalized mean stream-wise velocity u1/Uin

    图  15  无量纲化平均法向速度u2/Uin的法向分布

    Figure  15.  Vertical distribution of the normalized mean vertical velocity u2/Uin

    图  16  无量纲速度均方根值($u_{1}^{\prime} / U_{{\rm{in}}}$, $u_{2}^{\prime} / U_{{\rm{in}}}$, $u_{3}^{\prime} / U_{{\rm{in}}}$)的法向分布

    Figure  16.  Vertical distribution of the normalized mean squares velocity ($u_{1}^{\prime} / U_{{\rm{in}}}$, $u_{2}^{\prime} / U_{{\rm{in}}}$, $u_{3}^{\prime} / U_{{\rm{in}}}$)

    图  17  规则布置4个方柱的升力系数CL和阻力系数CD时程曲线

    Figure  17.  Time trace curves of the lift coefficient CL and the drag coefficient CD behind four cylinders for the regular array

    图  18  规则布置方柱中选定方柱的升力系数CL和阻力系数CD功率谱密度

    Figure  18.  Power spectral density of the lift coefficient CL and drag coefficient CD of the chosen square cylinders for the regular array

    图  19  分形布置方柱升力系数CL和阻力系数CD时程曲线

    Figure  19.  Time trace curves of the lift coefficient CL and the drag coefficient CD of square cylinders for the multiscale array

    图  20  分形布置方柱中选定方柱的升力系数CL和阻力系数CD功率谱密度

    Figure  20.  Power spectra density of the lift coefficient CL and the drag coefficient CD of the chosen square cylinder in the multiscale case

    图  21  规则布置和分形布置各方柱体的平均阻力系数CD

    Figure  21.  Mean drag coefficient CD of different square cylinders for the regular array and the multiscale array

    图  22  远场声压级指向分布图(r/TBar=32)

    Figure  22.  Directivity of SPL at r/TBar=32

    图  23  规则与分形布置方柱在选定观测点(0, 32TBar, 0)处不同柱体引起的瞬时声压随时间变化曲线

    Figure  23.  Time variation curves of the instantaneous acoustic pressure of different square cylinders at the observation point (0, 32TBar, 0) for the regular array and the multiscale array

    图  24  规则布置和分形布置方柱在选定观测点(0, 32TBar, 0)处的声压级功率谱密度

    Figure  24.  Power spectral density of the sound pressure level at the receiver point (0, 32TBar, 0) for the regular array and the multiscale array

    表  1  规则与分形模型具体几何参数

    Table  1.   Computational and geometrical parameters of regular and multiscale models

    算例ReinσXBar/TBarLg/TBarLX/TBarLY/TBarLZ/TBar网格数
    规则布置1040.3082.332813.346.00 × 106
    分形布置1040.3081.332813.346.96 × 106
    下载: 导出CSV
  • [1] 梁勇, 陈迎春, 赵鲲, 等. 锯齿单元对起落架/舱体耦合噪声抑制试验[J]. 航空学报, 2019, 40(8): 122932.

    LIANG Y, CHEN Y C, ZHAO K, et al. Test on suppression of aircraft landing gear/bay coupling noise using sawtooth spoiler[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122932. (in Chinese)
    [2] 徐国华, 史勇杰, 招启军, 等. 直升机旋翼气动噪声的研究新进展[J]. 航空学报, 2017, 38(7): 520991.

    XU G H, SHI Y J, ZHAO Q J, et al. New research progress in helicopter rotor aerodynamic noise[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 520991. (in Chinese)
    [3] ZHOU Y, ALAM M M. Wake of two interacting circular cylinders: a review[J]. International Journal of Heat and Fluid Flow, 2016, 62: 510-537. doi: 10.1016/j.ijheatfluidflow.2016.08.008
    [4] BLAKE W K. Mechanics of flow-induced sound and vibration, volume 1: general concepts and elementary sources[M]. San Diego: Academic Press, 2017.
    [5] WILLIAMSON C H K. Vortex dynamics in the cylinder wake[J]. Annual Review of Fluid Mechanics, 1996, 28: 477-539. doi: 10.1146/annurev.fl.28.010196.002401
    [6] ISHIGAI S, NISHIKAWA E, NISHIMURA K, et al. Experimental study on structure of gas flow in tube banks with tube axes normal to flow: Part 1, Karman vortex flow from two tubes at various spacings[J]. Bulletin of JSME, 1972, 15(86): 949-956. doi: 10.1299/jsme1958.15.949
    [7] AUGER J L, COUTANCEAU J. On the complex structure of the downstream flow of cylindrical tube rows at various spacings[J]. Mechanics Research Communications, 1978, 5(5): 297-302. doi: 10.1016/0093-6413(78)90026-5
    [8] ZHENG Q M, ALAM M M. Intrinsic features of flow past three square prisms in side-by-side arrangement[J]. Journal of Fluid Mechanics, 2017, 826: 996-1033. doi: 10.1017/jfm.2017.378
    [9] 刘欢. 等边布置三方柱绕流漩涡相互作用机制的数值分析[J]. 天津城建大学学报, 2018, 24(1): 33-39.

    LIU H. Numerical study of vortex interactions in flow around three equispaced square cylinders[J]. Journal of Tianjin Chengjian University, 2018, 24(1): 33-39. (in Chinese)
    [10] XU W H, ZHANG S H, LIU B, et al. An experimental study on flow-induced vibration of three and four side-by-side long flexible cylinders[J]. Ocean Engineering, 2018, 169: 492-510. doi: 10.1016/j.oceaneng.2018.09.038
    [11] INOUE O, IWAKAMI W, HATAKEYAMA N. Aeolian tones radiated from flow past two square cylinders in a side-by-side arrangement[J]. Physics of Fluids, 2006, 18(4): 046104. doi: 10.1063/1.2191847
    [12] INOUE O, SUZUKI Y. Beat of sound generated by flow past three side-by-side square cylinders[J]. Physics of Fluids, 2007, 19(4): 048102. doi: 10.1063/1.2714080
    [13] 杜炳鑫, 张文平, 明平剑. 基于流声分解法的串列和并列双圆柱绕流噪声数值模拟[J]. 船舶力学, 2019, 23(9): 1122-1138. doi: 10.3969/j.issn.1007-7294.2019.09.009

    DU B X, ZHANG W P, MING P J. Numerical simulation of flow-induced noise of two circular cylinders in tandem and side-by-side arrangements using a viscous/acoustic splitting method[J]. Journal of Ship Mechanics, 2019, 23(9): 1122-1138. (in Chinese) doi: 10.3969/j.issn.1007-7294.2019.09.009
    [14] 高威, 陈国勇. 串列双圆柱绕流的气动噪声特性分析[J]. 计算机辅助工程, 2018, 27(4): 41-46.

    GAO W, CHEN G Y. Characteristic analysis on aerodynamical noise of flow around tandem double cylinders[J]. Computer Aided Engineering, 2018, 27(4): 41-46. (in Chinese)
    [15] 余雷, 宋文萍, 韩忠华, 等. 基于混合RANS/LES方法与FW-H方程的气动声学计算研究[J]. 航空学报, 2013, 34(8): 1795-1805.

    YU L, SONG W P, HAN Z H, et al. Aeroacoustic noise prediction using hybrid RANS/LES method and FW-H equation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1795-1805. (in Chinese)
    [16] ZHOU Y, NAGATA K, SAKAI Y, et al. Extreme events and non-Kolmogorov −5/3 spectra in turbulent flows behind two side-by-side square cylinders[J]. Journal of Fluid Mechanics, 2019, 874: 677-698. doi: 10.1017/jfm.2019.456
    [17] KEYLOCK C J, NISHIMURA K, NEMOTO M, et al. The flow structure in the wake of a fractal fence and the absence of an “inertial regime”[J]. Environmental Fluid Mechanics, 2012, 12(3): 227-250. doi: 10.1007/s10652-011-9233-0
    [18] LAIZET S, NEDIĆ J, VASSILICOS J C. The spatial origin of −5/3 spectra in grid-generated turbulence[J]. Physics of Fluids, 2015, 27(6): 065115. doi: 10.1063/1.4923042
    [19] LAIZET S, VASSILICOS J C. Stirring and scalar transfer by grid-generated turbulence in the presence of a mean scalar gradient[J]. Journal of Fluid Mechanics, 2015, 764: 52-75. doi: 10.1017/jfm.2014.695
    [20] NAGATA K, SAKAI Y, INABA T, et al. Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence[J]. Physics of Fluids, 2013, 25(6): 065102. doi: 10.1063/1.4811402
    [21] ZHOU Y, NAGATA K, SAKAI Y, et al. Relevance of turbulence behind the single square grid to turbulence generated by regular-and multiscale-grids[J]. Physics of Fluids, 2014, 26(7): 075105. doi: 10.1063/1.4890746
    [22] DAIRAY T, OBLIGADO M, VASSILICOS J C. Non-equilibrium scaling laws in axisymmetric turbulent wakes[J]. Journal of Fluid Mechanics, 2015, 781: 166-195. doi: 10.1017/jfm.2015.493
    [23] ZHOU Y, VASSILICOS J C. Related self-similar statistics of the turbulent/non-turbulent interface and the turbulence dissipation[J]. Journal of Fluid Mechanics, 2017, 821: 440-457. doi: 10.1017/jfm.2017.262
    [24] BAŞBUĞ S, PAPADAKIS G, VASSILICOS J C. Reduced power consumption in stirred vessels by means of fractal impellers[J]. AIChE Journal, 2018, 64(4): 1485-1499. doi: 10.1002/aic.16096
    [25] BAŞBUĞ S, PAPADAKIS G, VASSILICOS J C. Reduced mixing time in stirred vessels by means of irregular impellers[J]. Physical Review Fluids, 2018, 3(8): 084502. doi: 10.1103/PhysRevFluids.3.084502
    [26] LAIZET S, VASSILICOS J C. Fractal space-scale unfolding mechanism for energy-efficient turbulent mixing[J]. Physical Review E, 2012, 86(4): 046302. doi: 10.1103/PhysRevE.86.046302
    [27] NEDIĆ J, GANAPATHISUBRAMANI B, VASSILICOS J C, et al. Aeroacoustic performance of fractal spoilers[J]. AIAA Journal, 2012, 50(12): 2695-2710. doi: 10.2514/1.J051387
    [28] NEDIĆ J, VASSILICOS J C. Vortex shedding and aerodynamic performance of airfoil with multiscale trailing-edge modifications[J]. AIAA Journal, 2015, 53(11): 3240-3250. doi: 10.2514/1.J053834
    [29] GEHLERT P P, CAFIERO G, VASSILICOS J C. Effect of fractal endplates on the wingtip vortex[C]//2018 AIAA Aerospace Sciences Meeting. Kissimmee: AIAA, 2018: 1796.
    [30] BAJ P, BUXTON O R H. Interscale energy transfer in the merger of wakes of a multiscale array of rectangular cylinders[J]. Physical Review Fluids, 2017, 2(11): 114607. doi: 10.1103/PhysRevFluids.2.114607
    [31] TAO S C, ZHOU Y. Turbulent flows around side-by-side cylinders with regular and multiscale arrangements[J]. Physical Review Fluids, 2019, 4(12): 124602. doi: 10.1103/PhysRevFluids.4.124602
    [32] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183-200. doi: 10.1023/A:1009995426001
    [33] FRANCESCANTONIO P D. A new boundary integral formulation for the prediction of sound radiation[J]. Journal of Sound and Vibration, 1997, 202(4): 491-509. doi: 10.1006/jsvi.1996.0843
    [34] 张强. 气动声学基础[M]. 北京: 国防工业出版社, 2012: 150-165.

    ZHANG Q. Basics of aeroacoustics[M]. Beijing: National Defense Industry Press, 2012: 150-165. (in Chinese)
    [35] PORTELA F A, PAPADAKIS G, VASSILICOS J C. The turbulence cascade in the near wake of a square prism[J]. Journal of Fluid Mechanics, 2017, 825: 315-352. doi: 10.1017/jfm.2017.390
    [36] LEE M B, KIM G C. A study on the near wake of a square cylinder using particle image velocimetry (I)-mean flow field[J]. Transactions of the Korean Society of Mechanical Engineers B, 2001, 25(10): 1408-1416.
    [37] HU J C, ZHOU Y, DALTON C. Effects of the corner radius on the near wake of a square prism[J]. Experiments in Fluids, 2006, 40(1): 106-118. doi: 10.1007/s00348-005-0052-2
    [38] DURÃO D F G, HEITOR M V, PEREIRA J C F. Measurements of turbulent and periodic flows around a square cross-section cylinder[J]. Experiments in Fluids, 1988, 6(5): 298-304. doi: 10.1007/BF00538820
    [39] LYN D A, EINAV S, RODI W, et al. A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder[J]. Journal of Fluid Mechanics, 1995, 304: 285-319. doi: 10.1017/S0022112095004435
    [40] SOHANKAR A, NORBERG C, DAVIDSON L. Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers[J]. Physics of Fluids, 1999, 11(2): 288-306. doi: 10.1063/1.869879
    [41] TRIAS F X, GOROBETS A, OLIVA A. Turbulent flow around a square cylinder at Reynolds number 22, 000: A DNS study[J]. Computers & Fluids, 2015, 123: 87-98.
    [42] DAVIS R W, MOORE E F, PURTELL L P. A numerical-experimental study of confined flow around rectangular cylinders[J]. Physics of Fluids, 1984, 27(1): 46-59. doi: 10.1063/1.864486
    [43] CHENG C M, LU P C, CHEN R H. Wind loads on square cylinder in homogeneous turbulent flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(1-3): 739-749. doi: 10.1016/0167-6105(92)90490-2
    [44] NORBERG C. Flow around rectangular cylinders: Pressure forces and wake frequencies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49(1-3): 187-196. doi: 10.1016/0167-6105(93)90014-F
    [45] SAHA A K, MURALIDHAR K, BISWAS G. Experimental study of flow past a square cylinder at high Reynolds numbers[J]. Experiments in Fluids, 2000, 29(6): 553-563. doi: 10.1007/s003480000123
    [46] CHEN J M, LIU C H. Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream[J]. International Journal of Heat and Fluid Flow, 1999, 20(6): 592-597. doi: 10.1016/S0142-727X(99)00047-8
    [47] BEARMAN P W, OBASAJU E D. An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders[J]. Journal of Fluid Mechanics, 1982, 119: 297-321. doi: 10.1017/S0022112082001360
    [48] MIZOTA T, OKAJIMA A. Experimental studies of time mean flows around rectangular prisms[J]. Proceedings of the Japan Society of Civil Engineers, 1981, 1981(312): 39-47. doi: 10.2208/jscej1969.1981.312_39
    [49] 陈武, 周毅. 基于K-FWH声比拟方法的串列双圆柱气动噪声研究[J]. 北京航空航天大学学报, 2021, 47(10): 2118-2128.

    CHEN W, ZHOU Y. Investigation on aeroacoustic of tandem double cylinders by K-FWH acoustic analogy method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2118-2128. (in Chinese)
    [50] LOCKARD D. Summary of the tandem cylinder solutions from the benchmark problems for airframe noise computations-I workshop[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2011: 353.
  • 加载中
图(24) / 表(1)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  32
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-24
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回