留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计及表面残余应力的旋转凸凹型纳米圆板失稳分析

杨勇强 杨萍 张旭乐

杨勇强,杨萍,张旭乐. 计及表面残余应力的旋转凸凹型纳米圆板失稳分析[J]. 机械科学与技术,2024,43(3):409-415 doi: 10.13433/j.cnki.1003-8728.20220266
引用本文: 杨勇强,杨萍,张旭乐. 计及表面残余应力的旋转凸凹型纳米圆板失稳分析[J]. 机械科学与技术,2024,43(3):409-415 doi: 10.13433/j.cnki.1003-8728.20220266
YANG Yongqiang, YANG Ping, ZHANG Xule. Instability Analysis of Rotating Convex and Concave Circular Nanoplate by Considering Surface Residual Stress[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 409-415. doi: 10.13433/j.cnki.1003-8728.20220266
Citation: YANG Yongqiang, YANG Ping, ZHANG Xule. Instability Analysis of Rotating Convex and Concave Circular Nanoplate by Considering Surface Residual Stress[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 409-415. doi: 10.13433/j.cnki.1003-8728.20220266

计及表面残余应力的旋转凸凹型纳米圆板失稳分析

doi: 10.13433/j.cnki.1003-8728.20220266
基金项目: 陕西科技大学博士基金项目(2020BJ-02)与陕西省教育厅服务地方专项(21JC004)
详细信息
    作者简介:

    杨勇强,副教授,博士, yangyongqiang@sust.edu.cn

  • 中图分类号: O327

Instability Analysis of Rotating Convex and Concave Circular Nanoplate by Considering Surface Residual Stress

  • 摘要: 根据纳米材料表面残余应力和弹性板小挠度理论,建立旋转凸凹型纳米圆板横向振动微分方程,采用微分求积法得到不同条件下凸凹型纳米圆板的无量纲复频率随无量纲角速度和无量纲表面残余应力参数变化情况。研究结果显示:在周边固支和简支条件下,旋转凸凹型纳米圆板均发生第1阶发散失稳现象。在其他条件一定的情况下,周边固支凹型纳米圆板的临界失稳角速度小于凸型纳米圆板,周边简支凹型纳米圆板的临界失稳角速度大于凸型纳米圆板。临界失稳角速度随着表面残余应力的增加而增大,临界表面残余应力随着无量纲角速度的增加而增大。
  • 图  1  旋转凸凹型纳米圆板

    Figure  1.  Rotating convex and concave circular nanoplate

    图  2  第1阶无量纲复频率$ \omega $与无量纲角速度$ c $的关系曲线(固支,$ g = {\text{3}} $)

    Figure  2.  Relationship curves for the first-order dimensionless complex frequency ω versus dimensionless angular speed c (clamped edge, g=3)

    图  3  第1阶无量纲复频率$ \omega $与无量纲角速度$ c $的关系曲线(固支,m = −0.05)

    Figure  3.  Relationship curves for the first-order dimensionless complex frequency ω versus dimensionless angular speed c (clamped edge, m = −0.05)

    图  4  第1阶无量纲复频率$ \omega $与无量纲表面残余应力$ g $的关系曲线(固支,m = −0.05)

    Figure  4.  Relationship curves for the first-order dimensionless complex frequency ω versus dimensionless surface residual stress g (clamped edge, m = −0.05)

    图  5  第1阶无量纲复频率$ \omega $与无量纲角速度$ c $的关系曲线(简支,g = 3)

    Figure  5.  Relationship curves for the first-order dimensionless complex frequency ω versus dimensionless angular speed c (simply supported edge, g = 3)

    图  6  第1阶无量纲复频率$ \omega $与无量纲角速度$ c $的关系曲线(简支,m = −0.05)

    Figure  6.  Relationship curves for the first-order dimensionless complex frequency ω versus dimensionless angular speed c (simply supported edge, m = −0.05)

    图  7  第1阶无量纲复频率$ \omega $与无量纲表面残余应力$ g $的关系曲线(简支,m = −0.05)

    Figure  7.  Relationship curves for the first-order dimensionless complex frequency ω versus dimensionless surface residual stress g (simply supported edge, m = −0.05)

    表  1  弹性圆板的固有频率与已有解比较

    Table  1.   Comparison between natural frequency of elastic circular plate and its known solutions

    边界条件 固支 简支
    本文解 文献[21]解 本文解 文献[21]解
    1阶 10.222 10.21 4.943 4.997
    2阶 39.811 39.78 29.774 29.76
    下载: 导出CSV
  • [1] FAN K Q, LIU J, CAI M L, et al. Exploiting ultralow-frequency energy via vibration-to-rotation conversion of a rope-spun rotor[J]. Energy Conversion and Management, 2020, 225: 113433. doi: 10.1016/j.enconman.2020.113433
    [2] 张大鹏, 雷勇军, 段静波. 基于非局部理论的黏弹性基体上压电纳米板热-机电振动特性研究[J]. 振动与冲击, 2020, 39(20): 32-41.

    ZHANG D P, LEI Y J, DUAN J B. Thermo-electro-mechanical vibration responses of piezoelectric nanoplates embedded in viscoelastic medium via nonlocal elasticity theory[J]. Journal of Vibration and Shock, 2020, 39(20): 32-41. (in Chinese)
    [3] SAHMANI A S, BAHRAMI M, ANSAR R.Surface effects on the free vibration behavior of post buckled circular higher-order shear deformable nanoplates including geometrical nonlinearity[J]. Acta Astronautica, 2014, 105: 417-427.
    [4] 王平远, 李成, 姚林泉. 基于非局部应变梯度理论功能梯度纳米板的弯曲和屈曲研究[J]. 应用数学和力学, 2021, 42(1): 15-26.

    WANG P Y, LI C, YAO L Q. Bending and buckling of functionally graded nanoplates based on the nonlocal strain gradient theory[J]. Applied Mathematics and Mechanics, 2021, 42(1): 15-26. (in Chinese)
    [5] 滕兆春, 刘露, 衡亚洲. 弹性地基上受压矩形纳米板的自由振动与屈曲特性[J]. 振动与冲击, 2019, 38(16): 208-216. doi: 10.13465/j.cnki.jvs.2019.16.030

    TENG Z C, LIU L, HENG Y Z. Free vibration and buckling characteristics of compressed rectangular nanoplates resting on elastic foundation[J]. Journal of Vibration and Shock, 2019, 38(16): 208-216. (in Chinese) doi: 10.13465/j.cnki.jvs.2019.16.030
    [6] WANG W J, LI P, JIN F, et al. Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects[J]. Composite Structures, 2016, 140: 758-775. doi: 10.1016/j.compstruct.2016.01.035
    [7] DUAN W H, WANG C M. Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory[J]. Nanotechnology, 2007, 18(38): 385704. doi: 10.1088/0957-4484/18/38/385704
    [8] BEDROUD M, HOSSEINI-HASHEMI S, NAZEMNEZHAD R. Buckling of circular/annular Mindlin nanoplates via nonlocal elasticity[J]. Acta Mechanica, 2013, 224(11): 2663-2676. doi: 10.1007/s00707-013-0891-5
    [9] ANJOMSHOA A, TAHANI M. Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method[J]. Journal of Mechanical Science and Technology, 2016, 30(6): 2463-2474. doi: 10.1007/s12206-016-0506-x
    [10] DASTJERDI S, JABBARZADEH M. Non-linear bending analysis of multi-layer orthotropic annular/circular graphene sheets embedded in elastic matrix in thermal environment based on non-local elasticity theory[J]. Applied Mathematical Modelling, 2017, 41: 83-101. doi: 10.1016/j.apm.2016.08.022
    [11] 赵德敏, 龚宇龙. 考虑表面效应的纳米圆形薄板振动[J]. 中国石油大学学报(自然科学版), 2017, 41(5): 153-158.

    ZHAO D M, GONG Y L. Surface effects on vibration of circular thin nano-plate[J]. Journal of China University of Petroleum, 2017, 41(5): 153-158. (in Chinese)
    [12] ASSADI A, FARSHI B. Vibration characteristics of circular nanoplates[J]. Journal of Applied Physics, 2010, 108(7): 074312. doi: 10.1063/1.3486514
    [13] YAN Z. Size-dependent bending and vibration behaviors of piezoelectric circular nanoplates[J]. Smart Materials and Structures, 2016, 25(3): 035017. doi: 10.1088/0964-1726/25/3/035017
    [14] LIU C, RAJAPAKSE R K N D. A size-dependent continuum model for nanoscale circular plates[J]. IEEE Transactions on Nanotechnology, 2013, 12(1): 13-20. doi: 10.1109/TNANO.2012.2224880
    [15] MALEKZADEH P, FARAJPOUR A. Axisymmetric free and forced vibrations of initially stressed circular nanoplates embedded in an elastic medium[J]. Acta Mechanica, 2012, 223(11): 2311-2330. doi: 10.1007/s00707-012-0706-0
    [16] JANDAGHIAN A A, JAFARI A A, RAHMANI O. Vibrational response of functionally graded circular plate integrated with piezoelectric layers: an exact solution[J]. Engineering Solid Mechanics, 2014, 2(2): 119-130. doi: 10.5267/j.esm.2014.1.004
    [17] MAHINZARE M, ALIPOUR M J, SADATSAKKAK S A, et al. A nonlocal strain gradient theory for dynamic modeling of a rotary thermo piezo electrically actuated nano FG circular plate[J]. Mechanical Systems and Signal Processing, 2019, 115: 323-337. doi: 10.1016/j.ymssp.2018.05.043
    [18] ZAREI M, FAGHANI G R, GHALAMI M, et al. Buckling and vibration analysis of tapered circular nano plate[J]. Journal of Applied and Computational Mechanics, 2018, 4(1): 40-54.
    [19] 王忠民, 王昭, 张荣, 等. 基于微分求积法分析旋转圆板的横向振动[J]. 振动与冲击, 2014, 33(1): 125-129. doi: 10.3969/j.issn.1000-3835.2014.01.021

    WANG Z M, WANG Z, ZHANG R, et al. Transverse vibration analysis of spinning circular plate based on differential quadrature method[J]. Journal of Vibration and Shock, 2014, 33(1): 125-129. (in Chinese) doi: 10.3969/j.issn.1000-3835.2014.01.021
    [20] YANG Y Q, WANG Z M, WANG Y Q. Thermoelastic coupling vibration and stability analysis of rotating circular plate in friction clutch[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019, 38(2): 558-573. doi: 10.1177/1461348418817465
    [21] 倪振华. 振动力学[M]. 西安: 西安交通大学出版社, 1989.

    NI Z H. Vibration mechanics[M]. Xi'an: Xi'an Jiaotong University Press, 1989. (in Chinese)
    [22] SAHMANI S, BAHRAMI M, ANSARI R. Surface effects on the free vibration behavior of postbuckled circular higher-order shear deformable nanoplates including geometrical nonlinearity[J]. Acta Astronautica, 2014, 105(2): 417-427. doi: 10.1016/j.actaastro.2014.10.005
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-17
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回