留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞行器机翼变形驱动机构研究

郭广宇 陈青山 高宏

郭广宇,陈青山,高宏. 飞行器机翼变形驱动机构研究[J]. 机械科学与技术,2024,43(3):540-545 doi: 10.13433/j.cnki.1003-8728.20220250
引用本文: 郭广宇,陈青山,高宏. 飞行器机翼变形驱动机构研究[J]. 机械科学与技术,2024,43(3):540-545 doi: 10.13433/j.cnki.1003-8728.20220250
GUO Guangyu, CHEN Qingshan, GAO Hong. Study on Deformation Driving Mechanism of Aircraft Wing[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 540-545. doi: 10.13433/j.cnki.1003-8728.20220250
Citation: GUO Guangyu, CHEN Qingshan, GAO Hong. Study on Deformation Driving Mechanism of Aircraft Wing[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 540-545. doi: 10.13433/j.cnki.1003-8728.20220250

飞行器机翼变形驱动机构研究

doi: 10.13433/j.cnki.1003-8728.20220250
详细信息
    作者简介:

    郭广宇,硕士, 827527627@qq.com

    通讯作者:

    陈青山,教授,硕士生导师,chenqqss@sina.com

  • 中图分类号: TH13; V224

Study on Deformation Driving Mechanism of Aircraft Wing

  • 摘要: 为了优化飞行器气动特性,提升飞行效率,研究用于连续变弯度机翼的多级连杆驱动机构。采用ANSYS流体分析功能研究最大弯曲角度下变弯度机翼的气动特性;采用ANSYS静力学分析功能研究极限载荷条件下驱动机构的结构强度;并通过仿真分析与样机测试对驱动机构的运动情况进行研究。研究结果表明:变形机翼获得升力系数为1.4,所受最大气流动压1 078 Pa,小于下表面屈服气流动压4 916 Pa;驱动机构所受最大应力37.3 MPa,小于结构屈服强度55.2 MPa;机翼弯曲变形角度可达±25°,满足了飞行器对改善飞行特性方面的需要。
  • 图  1  变弯度机翼构成

    Figure  1.  Composition of variable camber wing

    图  2  机翼驱动机构

    Figure  2.  Driving mechanisms of wing

    图  3  驱动机构原理

    Figure  3.  Principle of driving mechanisms

    图  4  驱动机构

    Figure  4.  Driving mechanisms

    图  5  驱动机构整体布局

    Figure  5.  Overall layout of a driving mechanism

    图  6  变弯度机翼压力场分布

    Figure  6.  Pressure field distribution of variable camber wing

    图  7  驱动机构应力分布

    Figure  7.  Stress distribution of a driving mechanism

    图  8  输出轴转动角度

    Figure  8.  Rotation angle of output shaft

    图  9  实验样机模型

    Figure  9.  Experimental prototype model

    图  10  变弯度机翼控制系统示意

    Figure  10.  Schematic diagram of variable camber wing control system

    图  11  变弯度机翼偏转角度

    Figure  11.  Deformation angle of variable camber wing

    表  1  变形机翼蒙皮常见材料与结构性能参数

    Table  1.   Common materials and structural performance parameters of deformed wing skin

    参数拉伸强度/MPa形变量/%
    硅橡胶材料3.5 ~ 14.7>100
    形状记忆环氧聚合物4050 ~ 100
    波纹结构6.32 ~ 5
    聚合碳纤维蜂窝结构18002 ~ 10
    下载: 导出CSV

    表  2  机翼极限载荷条件及几何参数

    Table  2.   Limit load conditions and geometric parameters of wing

    机翼特征 指标参数
    机翼全长/cm 248
    变形区域长度/cm 168
    上表面压力系数 0.295
    下表面压力系数 0.488
    上表面气流动压/Pa 2855
    下表面气流动压/Pa 4916
    上表面压力/N 1258
    下表面压力/N 2540
    下载: 导出CSV
  • [1] 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443.

    BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443. (in Chinese)
    [2] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. doi: 10.1177/1045389X11414084
    [3] NIU W, ZHANG Y F, CHEN H X, et al. Numerical study of a supercritical airfoil/wing with variable-camber technology[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1850-1866. doi: 10.1016/j.cja.2020.01.008
    [4] ZHAO A M, ZOU H, JIN H C, et al. Structural design and verification of an innovative whole adaptive variable camber wing[J]. Aerospace Science and Technology, 2019, 89: 11-18. doi: 10.1016/j.ast.2019.02.032
    [5] 许云涛. 智能变形飞行器发展及关键技术研究[J]. 战术导弹技术, 2017(2): 26-33. doi: 10.16358/j.issn.1009-1300.2017.02.05

    XU Y T. Research on the development and key technology of smart morphing aircraft[J]. Tactical Missile Technology, 2017(2): 26-33. (in Chinese) doi: 10.16358/j.issn.1009-1300.2017.02.05
    [6] 景藜, 张永红, 葛文杰, 等. 基于多目标载荷路径法的形状变形机翼后缘柔性机构拓扑优化[J]. 机械科学与技术, 2010, 29(10): 1420-1425. doi: 10.13433/j.cnki.1003-8728.2010.10.023

    JING L, ZHANG Y H, GE W J, et al. Topology optimization for shape morphing compliant trailing edge using multi-objective load path approach[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(10): 1420-1425. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2010.10.023
    [7] GUO L Q, TAO J, WANG C, et al. Fuel efficiency optimization of high-aspect-ratio aircraft via variable camber technology considering aeroelasticity[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(7): 782-793.
    [8] 李小飞, 张梦杰, 王文娟, 等. 变弯度机翼技术发展研究[J]. 航空科学技术, 2020, 31(2): 12-24. doi: 10.19452/j.issn1007-5453.2020.02.002

    LI X F, ZHANG M J, WANG W J, et al. Research on variable camber wing technology development[J]. Aeronautical Science & Technology, 2020, 31(2): 12-24. (in Chinese) doi: 10.19452/j.issn1007-5453.2020.02.002
    [9] ELZEY D M, SOFLA A Y N, WADLEY H N G. A bio-inspired high-authority actuator for shape morphing structures[C]//Proceedings of SPIE 5053, Smart Structures and Materials 2003: Active Materials: Behavior and Mechanics. San Diego, CA: SPIE, 2003: 92-100.
    [10] 杨媛, 徐志伟. 基于SMA的飞行器变体机翼驱动结构研究[J]. 兵器材料科学与工程, 2010, 33(1): 25-30. doi: 10.3969/j.issn.1004-244X.2010.01.007

    YANG Y, XU Z W. Research of the airfoil structure based on a shape-memory alloy actuated morphing wing[J]. Ordnance Material Science and Engineering, 2010, 33(1): 25-30. (in Chinese) doi: 10.3969/j.issn.1004-244X.2010.01.007
    [11] PREVITALI F, MOLINARI G, ARRIETA A F, et al. Design and experimental characterisation of a morphing wing with enhanced corrugated skin[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(2): 278-292. doi: 10.1177/1045389X15595296
    [12] ARENA M, AMOROSO F, PECORA R, et al. Numerical and experimental validation of a full scale servo-actuated morphing aileron model[J]. Smart Materials and Structures, 2018, 27(10): 105034. doi: 10.1088/1361-665X/aad7d9
    [13] 王帮峰, 牟常伟, 周春华. 用于变体机翼的波纹式纤维增强复合材料蒙皮基体变形特性研究[J]. 机械科学与技术, 2011, 30(7): 1047-1050. doi: 10.13433/j.cnki.1003-8728.2011.07.031

    WANG B F, MOU C W, ZHOU C H. Tensile deformation properties of wave style fiber reinforced composite skin for a morphing wing[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(7): 1047-1050. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2011.07.031
    [14] 谭巧. 形状记忆环氧聚合物及其复合材料的典型力学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    TAN Q. Typical mechanical behavior of epoxy shape memory polymer and its composite[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [15] 尹维龙, 石庆华. 变体飞行器蒙皮材料与结构研究综述[J]. 航空制造技术, 2017, 60(17): 24-29. doi: 10.16080/j.issn1671-833x.2017.17.024

    YIN W L, SHI Q H. Review of material and structure for morphing aircraft skin[J]. Aeronautical Manufacturing Technology, 2017, 60(17): 24-29. (in Chinese) doi: 10.16080/j.issn1671-833x.2017.17.024
    [16] YOKOZEKI T, SUGIURA A, HIRANO Y. Development of variable camber morphing airfoil using corrugated structure[J]. Journal of Aircraft, 2014, 51(3): 1023-1029. doi: 10.2514/1.C032573
    [17] AMENDOLA G, DIMINO I, CONCILIO A, et al. A linear guide-based actuation concept for a novel morphing aileron[J]. The Aeronautical Journal, 2019, 123(1265): 1075-1097. doi: 10.1017/aer.2019.35
    [18] RIVERO A E, WEAVER P M, COOPER J E, et al. Parametric structural modelling of fish bone active camber morphing aerofoils[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(9): 2008-2026. doi: 10.1177/1045389X18758182
    [19] 艾森, 聂小华, 王立凯, 等. 利用精细有限元模型实现大型机翼尺寸优化设计[J]. 机械科学与技术, 2021, 40(3): 487-492.

    AI S, NIE X H, WANG L K, et al. Optimization design of large scale wing size via refined finite element model[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 487-492. (in Chinese)
    [20] TAKAHASHI H, YOKOZEKI T, HIRANO Y. Development of variable camber wing with morphing leading and trailing sections using corrugated structures[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(20): 2827-2836. doi: 10.1177/1045389X16642298
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回