留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钴铬钼合金超声振动辅助抛光力与表面质量的探究

于保军 吴爽 辛成磊 贾茹 谷岩

于保军,吴爽,辛成磊, 等. 钴铬钼合金超声振动辅助抛光力与表面质量的探究[J]. 机械科学与技术,2024,43(3):497-503 doi: 10.13433/j.cnki.1003-8728.20220248
引用本文: 于保军,吴爽,辛成磊, 等. 钴铬钼合金超声振动辅助抛光力与表面质量的探究[J]. 机械科学与技术,2024,43(3):497-503 doi: 10.13433/j.cnki.1003-8728.20220248
YU Baojun, WU Shuang, XIN Chenglei, JIA Ru, GU Yan. Study on Ultrasonic Vibration Assisted Polishing Force and Surface Quality of CoCrMo Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 497-503. doi: 10.13433/j.cnki.1003-8728.20220248
Citation: YU Baojun, WU Shuang, XIN Chenglei, JIA Ru, GU Yan. Study on Ultrasonic Vibration Assisted Polishing Force and Surface Quality of CoCrMo Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 497-503. doi: 10.13433/j.cnki.1003-8728.20220248

钴铬钼合金超声振动辅助抛光力与表面质量的探究

doi: 10.13433/j.cnki.1003-8728.20220248
基金项目: 吉林省科技发展计划(20190201254JC)
详细信息
    作者简介:

    于保军,教授,博士, yubaojun@ccut.edu.cn

    通讯作者:

    谷岩,副教授,博士,guyan@ccut.edu.cn

  • 中图分类号: TG580

Study on Ultrasonic Vibration Assisted Polishing Force and Surface Quality of CoCrMo Alloy

  • 摘要: 针对钴铬钼合金的难加工性,采用超声振动辅助抛光的加工方法改善其加工效果。根据超声振动装置的运动特性,分析了单磨粒运动速度、单磨粒与工件接触轨迹坐标和单磨粒受力,建立了抛光系统的抛光力预测模型,讨论了主轴转速、进给速度和抛光深度对钴铬钼合金表面质量的影响并用实验验证了预测模型的合理性。结果表明:抛光力预测模型和实验的变化趋势一致,抛光力随着主轴转速和抛光深度的增大而增大,随着进给速度的增大而减小。本研究将为超声振动辅助抛光工艺提供理论基础。
  • 图  1  超声振动辅助加工基本原理图

    Figure  1.  Ultrasonic vibration assisted machining schematic diagram

    图  2  单磨粒抛光轨迹示意图

    Figure  2.  Single abrasive polishing trajectory diagram

    图  3  斜椭圆加工轨迹示意图

    Figure  3.  Oblique ellipse machining trajectory diagram

    图  4  抛光力几何关系示意图

    Figure  4.  Geometric relationship of polishing force diagram

    图  5  实验加工平台图

    Figure  5.  Experimental machining platform diagram

    图  6  三维形貌仪

    Figure  6.  3D optical profilometer

    图  7  不同主轴转速下超声振动辅助抛光表面形貌

    Figure  7.  Ultrasonic vibration-assisted polishing surface morphology at different spindle speeds

    图  8  不同进给速度下超声振动辅助抛光表面形貌

    Figure  8.  Ultrasonic vibration-assisted polishing surface morphology at different feed rates

    图  9  不同抛光深度下超声振动辅助抛光表面形貌

    Figure  9.  Ultrasonic vibration-assisted polishing surface morphology at different polishing depths

    图  10  加工参数对抛光力的影响

    Figure  10.  Effect of machining parameters on polishing force

    表  1  实验加工参数

    Table  1.   Experimental processing parameters

    参数 参数值
    主轴转速/(r·min−1 1000、1500、2000、2500
    进给速度/(mm·min−1 10、20、40、60
    抛光头目数 1500#、3000#
    抛光深度/μm 0.6、0.8、1.0、1.2、1.4
    下载: 导出CSV
  • [1] JACKY. 中国骨科材料市场现状及创新趋势浅析[J]. 科技与金融, 2020(7): 53-57. doi: 10.3969/j.issn.2096-4935.2020.07.018

    JACKY. Current situation and innovation trend of orthopaedic material market in China[J]. STF Monthly, 2020(7): 53-57. (in Chinese) doi: 10.3969/j.issn.2096-4935.2020.07.018
    [2] 三菱综合材料. 技术革新、突飞猛进的再生医疗器械行业[J]. 金属加工(冷加工), 2020(11): 25.

    Mitsubishi Materials. Regenerative medical device industry with technological innovation and rapid progress[J]. Metal Working (Metal Cutting), 2020(11): 25. (in Chinese)
    [3] SONIA P, JAIN J K, SAXENA K K. Influence of ultrasonic vibration assistance in manufacturing processes: a review[J]. Materials and Manufacturing Processes, 2021, 36(13): 1451-1475. doi: 10.1080/10426914.2021.1914843
    [4] WANG Y, LIN B, WANG S L, et al. Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing[J]. International Journal of Machine Tools and Manufacture, 2014, 77: 66-73. doi: 10.1016/j.ijmachtools.2013.11.003
    [5] 原路生, 赵波, 王毅, 等. 椭圆振动辅助车削7075铝合金表面微织构及其特性[J]. 中国机械工程, 2020, 31(15): 1831-1838. doi: 10.3969/j.issn.1004-132X.2020.15.010

    YUAN L S, ZHAO B, WANG Y, et al. Surface micro-texture characteristics of 7075 aluminum alloys by elliptical vibration assisted turning[J]. China Mechanical Engineering, 2020, 31(15): 1831-1838. (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.15.010
    [6] YU T B, GUO X P, WANG Z H, et al. Effects of the ultrasonic vibration field on polishing process of nickel-based alloy Inconel718[J]. Journal of Materials Processing Technology, 2019, 273: 116228. doi: 10.1016/j.jmatprotec.2019.05.009
    [7] 李义辉. 超声无磨料内圆抛光声学系统及抛光工艺研究[D]. 焦作: 河南理工大学, 2010.

    LI Y H. Study on acoustic system and process of ultrasonic inner circle polishing without abrasives[D]. Jiaozuo: Henan Polytechnic University, 2010. (in Chinese)
    [8] 倪陈兵, 朱立达, 宁晋生, 等. 超声振动辅助铣削钛合金铣削力信号及切屑特征研究[J]. 机械工程学报, 2019, 55(7): 207-216. doi: 10.3901/JME.2019.07.207

    NI C B, ZHU L D, NING J S, et al. Research on the characteristics of cutting force signal and chip in ultrasonic vibration-assisted milling of titanium alloys[J]. Journal of Mechanical Engineering, 2019, 55(7): 207-216 . (in Chinese) doi: 10.3901/JME.2019.07.207
    [9] 马文举, 薛进学, 隆志力, 等. 纵扭超声磨削ZrO2陶瓷表面形貌及粗糙度特征研究[J]. 机械科学与技术, 2021, 40(7): 1058-1064.

    MA W J, XUE J X, LONG Z L, et al. Study on surface morphology and roughness characteristics of ZrO2 ceramics longitudinal torsional ultrasonic grinding[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1058-1064 . (in Chinese)
    [10] ZHAO G L, MAO P C, LI L, et al. Micro-milling of 65 vol% SiCp/Al Composites with a Novel Laser-assisted Hybrid Process[J]. Ceramics International, 2020, 46(16): 26121-26128. doi: 10.1016/j.ceramint.2020.07.107
    [11] ZHAO Q L, SUN Z Y, GUO B. Material removal mechanism in ultrasonic vibration assisted polishing of Micro cylindrical surface on SiC[J]. International Journal of Machine Tools and Manufacture, 2016, 103: 28-39. doi: 10.1016/j.ijmachtools.2016.01.003
    [12] 张翔宇, 路正惠, 彭振龙, 等. 钛合金的高质高效超声振动切削加工[J]. 机械工程学报, 2021, 57(5): 133-147. doi: 10.3901/JME.2021.05.133

    ZHANG X Y, LU Z H, PENG Z L, et al. High quality and efficient ultrasonic vibration cutting of titanium alloys[J]. Journal of Mechanical Engineering, 2021, 57(5): 133-147. (in Chinese) doi: 10.3901/JME.2021.05.133
    [13] 丁凯, 李奇林, 雷卫宁, 等. 单颗磨粒超声辅助磨削SiC陶瓷材料去除机理[J]. 中国机械工程, 2021, 32(19): 2331-2339. doi: 10.3969/j.issn.1004-132X.2021.19.008

    DING K, LI Q L, LEI W N, et al. Material removal mechanism during UAG of SiC ceramic with a brazed single abrasive grain tool[J]. China Mechanical Engineering, 2021, 32(19): 2331-2339. (in Chinese) doi: 10.3969/j.issn.1004-132X.2021.19.008
    [14] 郑非非, 董志刚, 张嘉桐, 等. 超声振动对单颗金刚石工具划擦RB-SiC材料去除行为的影响[J]. 机械工程学报, 2019, 55(1): 225-232. doi: 10.3901/JME.2019.01.225

    ZHENG F F, DONG Z G, ZHANG J T, et al. Influence of ultrasonic vibration on material removal of scratching on RB-SiC with single diamond tool[J]. Journal of Mechanical Engineering, 2019, 55(1): 225-232 . (in Chinese) doi: 10.3901/JME.2019.01.225
    [15] 卢昊. 二维超声研磨加工装置设计及加工机理研究[D]. 长春: 长春工业大学, 2020.

    LU H. Research on the design and machining mechanism of two-dimensional ultrasonic grinding device[D]. Changchun: Changchun University of Technology, 2020. (in Chinese)
    [16] JOHNSON K L, KENDALL K, ROBERTS A D. Surface energy and the contact of elastic solids[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1971, 324(1558): 301-313.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回